

GR 22 Regulations

M.Tech I Year I semester

MATRIX METHODS IN STRUCTURAL ANALYSIS (GR22D5001)

UNIT - I

Introduction to matrix methods of analysis - Static indeterminacy and kinematic indeterminacy - degree of freedom - coordinate system - structure idealization stiffness and flexibility matrices - suitability element stiffness equations - elements flexibility equations - mixed force - displacement equations - for truss element, beam element and tensional element. Transformation of coordinates - element stiffness matrix - and load vector - local and global coordinates

UNIT - II

Stiffness Matrix Assembly of Structures and its Applications to Simple Problems: Direct Stiffness method, Matrix in Global Coordinates, Boundary Conditions, Solution of Stiffness Matrix Equations.

UNIT - III

Analysis of Beams, Plane Trusses, Plane Rigid Jointed frames using flexibility method

UNIT - IV

Analysis of plane truss - continuous beam - plane frame and grids by stiffness matrix methods.

UNIT - V

Special analysis procedures - Static condensation and sub structuring - initial and thermal stresses. Shear walls- Necessity - structural behaviour of large frames with and without shear walls - approximate methods of analysis of shear walls.

TEXT BOOKS:

- 1. William Weaver J.R and James M.Geve, Matrix Analysis of Frames structures, CBS publications, Delhi 2004.
- 2. Ashok.K.Jain, Advanced Structural Analysis, New Channel Brothers, 1996.
- 3. C.S.Reddy, Structural Analysis, 3rd edition, 2010.

REFERENCES:

- 1. Kanchi, Matrix Structural Analysis, 1995.
- 2. J.Meek, Matrix Methods of Structural Analysis, 3rd edition, 1980.
- 3. Ghali and Neyveli, Structural Analysis, 3rd edition, December, 1990.

DEPARTMENT OF CIVIL ENGINEERING (STRUCTURAL ENGINEERING)

I M. Tech Sen	(GR-22) - I nester			AY: 2022- 23				wef 26-10-2022	
Day/Hour	09:00-10:00	10:00-11:00	11:00- 12:00	12:00-01:00	01:00-02:00	02:00-03:00	03:00-04:00	Room No.	
MONDAY			MMSA	LUNCH				Theory/ Tutorial	4203
TUESDAY						MMSA		Lab	4205 (SD Lab) /4108&4110(ACT Lab)
WEDNESD AY	MMSA							M.Tech Co-ordinator	
THURSDA Y	MMSA								
FRIDAY								Dr. V Srinivasa Reddy (1117)	
SATURDA Y									

Sub. Code	Subjects	Faculty Name	Almanac	
GR22D500 1	Matrix methods in structural analysis	Dr. G V V Satyanarayana (842)	1 st Spell of Instruction	26-10-2022 to 22-12- 2022
GR22D500 2	Advanced Solid Mechanics	Dr.V.Srinivas Reddy (Dr.VSR-1117)	1st Mid-term Examinations	23-12-2022 to 29-12- 2022
GR22D500 4	Advanced Concrete Technology	Dr.V.Mallikarjun Reddy (Dr.VMR- 807)	2nd Spell of Instruction	30-12-2022 to 28-02- 2023
GR22D500 6	Analytical and Numerical methods for Structural Engineering	Mr.V.Naresh Kumar Varma(1359)	2nd Mid-term Examinations	01-03-2023 to 07-03- 2023
GR22D500 9	Structural Design Lab	Mr.C.Vanadeep (Mr.CV-1645)/Mr.C.Vivek Kumar(1500)/Mrs.P.Sirisha(Mrs.PS-1524)	Preparation	08-03-2023 to 14-03- 2023
GR22D501 0	Advanced Concrete Technology Lab	Mr.Kusuma Veera Babu (Mr.KVB- 1650)/Mr.V.Ramesh(1646)/Mr.PVVSSR Krishna (Mr.PVVSSRK-1562)	End Semester Examinations/ (Theory/ Practicals) Regular/Supplement ar y	15-03-2023 to 01-04- 2023
GR22D501 1	Research Methodology and IPR	Dr. Mohammed Hussain(Dr.Mohd.H- 861)		
GR22D515 3	English for Research Paper Writing	Dr.R.Lakshmi Kanthi (Dr.LRK-718)		

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: MATRIX METHODS IN STRUCTURAL ANALYSIS Course Code: GR22D5001

Program Educational Objective's

PEO 1:

Graduates of the program will equip with professional expertise on the theories, process, methods and techniques for building high-quality structures in a cost-effective manner.

PEO 2:

Graduates of the program will be able to design structural components using contempory software and professional tools with quality practices of international standards.

PEO 3:

Graduates of the program will be effective as both an individual contributor and a member of a development team with professional, ethical and social responsibilities.

PEO 4:

Graduates of the program will grow professionally through continuing education, training, research, and adapting to the rapidly changing technological trends globally in structural engineering.

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: MATRIX METHODS IN STRUCTURAL ANALYSIS Course Code: GR22D5001

Programme Outcomes

Graduates of the Civil Engineering programme will be able to

- **PO 1:** An ability to independently carry out research / investigation and development to solve practical problems
- PO 2: An ability to write and present a substantial technical report / document.
- **PO 3:** Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's.
- **PO 4:** Possesses critical thinking skills and solves core, complex and multidisciplinary structural engineering problems.
- **PO 5:** Assess the impact of professional engineering solutions in an environmental context along with societal, health, safety, legal, ethical and cultural issues and the need for sustainable development.
- PO 6: Recognize the need for life-long learning to improve knowledge and competence.

COURSE OBJECTIVES

Academic Year : 2022-23

Semester : I

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis

Course Code: GR22D5001

Name of the Faculty: Dr. GVV Satyanarayana

Dept.: Civil Engineering

Designation: PROFESSOR

On completion of this Subject/Course the student shall be able to:

S.No	Objectives
1	To learn how to idealize statically and kinematically determinate and indeterminate Structures
	and their ill effects.
2.	To learn the difference between local and global co-ordinates systems and its role in preparation of stiffness matrix.
3	To understand the effective usage of flexibility matrix method in statically indeterminate structures.
4	To understand the effective usage of stiffness matrix method in kinematically indeterminate structures.
5	To understand about static condensation and sub structuring. To learn about shear walls and their role in multi storied structures.

Signature of HOD

Signature of faculty

Date:

Date:

Note: Please refer to Bloom's Taxonomy, to know the illustrative verbs that can be used to state the objectives.

COURSE OUTCOMES

Academic Year	: 2022-23	
Semester	: I	
Name of the Program:	M.Tech (Structural Engineering)	Year: I
Course/Subject: Matrix	Methods in Structural Analysis	Course Code: GR22D5001
Name of the Faculty: D	Dr.GVV Satyanarayana	Dept.: Civil Engineering

Designation: PROFESSOR.

The expected outcomes of the Course/Subject are:

r	
S.No	Outcomes
1	Evaluate the static and kinematic indeterminacy and generate stiffness and flexibility matrices.
2	Analyse the skeleton structures using stiffness method under different coordinate system.
3	Use flexibility matrix method to analyse different structures.
4	Use stiffness matrix method to analyse different structures.
5	Analyse various types of structural members using special analysis procedures and shear walls in multi storied constructions

Signature of HOD

Date:

Signature of faculty

Date:

Note: Please refer to Bloom's Taxonomy, to know the illustrative verbs that can be used to state the outcomes.

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

الاورمان	auter for by the former of the	
	M.Tech (Structural Engineerin I Year I Semester	g)
	Academic Year 2022-23	
S.No	Student Name	Roll No
1	ADDAGATLA MAHESHKUMAR	22241D2001
2	AHMED ABDUL AZEEM	22241D2002
3	BAIRAPAKA BHARAT	22241D2003
4	BARLAPUDI ACHSAHKEERTHANA	22241D2004
5	CHAKALI SOWMYA	22241D2005
~	CHAPPIDI NARESH	2224102006

3	BAIRAPAKA BHARAT	22241D2003
4	BARLAPUDI ACHSAHKEERTHANA	22241D2004
5	CHAKALI SOWMYA	22241D2005
6	CHAPPIDI NARESH	22241D2006
7	DANTHALA HARIDEEPKUMAR	22241D2007
8	DEVIREDDY ANISH	22241D2008
9	DHARAVATHNAGENDAR	22241D2009
10	GANGAPURAM SUSHANTH REDDY	22241D2010
11	JEREPOTHULARAVALIKA	22241D2011
12	KADABOHINASAIPAVAN	22241D2012
13	KASUMURU BHARAT KUMAR	22241D2013
14	MACHARLA SRINIVAS	22241D2014
15	MALLI SREENIVASULU	22241D2015
16	SHAIK ABDUL MUQEED	22241D2016
17	SHAIK ZABI ULLAH	22241D2017
18	SONWANE SAHILSHIVAJIRAO	22241D2018
19	LINGAM LAKSHMI NARAYANA	22241D2019

GUIDELINES TO STUDY THE COURSE / SUBJECT

Academic Year : 2022-23

Semester : I

Name of the Program: M.Tech (Structural Engineering)

Course/Subject: Matrix Methods in Structural Analysis

Course Code: GR22D5001

Year: I

Name of the Faculty: Dr.GVV Satyanarayana

Dept.: Civil Engineering

Designation: PROFESSOR

Guidelines to study the Course/ Subject: Structural Analysis

Course Design and Delivery System (CDD):

- The Course syllabus is written into number of learning objectives and outcomes.
- These learning objectives and outcomes will be achieved through lectures, assessments, assignments, experiments in the laboratory, projects, seminars, presentations, etc.
- Every student will be given an assessment plan, criteria for assessment, scheme of evaluation and grading method.
- The Learning Process will be carried out through assessments of Knowledge, Skills and Attitude by various methods and the students will be given guidance to refer to the text books, reference books, journals, etc.

The faculty be able to -

- Understand the principles of Learning
- Understand the psychology of students
- Develop instructional objectives for a given topic
- Prepare course, unit and lesson plans
- Understand different methods of teaching and learning
- Use appropriate teaching and learning aids
- Plan and deliver lectures effectively
- Provide feedback to students using various methods of Assessments and tools of Evaluation
- Act as a guide, advisor, counselor, facilitator, motivator and not just as a teacher alone

Signature of HOD

Signature of faculty

Date:

COURSE SCHEDULE

Academic Year	:	2022-23		
Semester	:	Ι		
Name of the Program: M.Tech (Struc	ctural Engineering)	Year: I	
Course/Subject: Matrix Methods	s in S	Structural analysis		Course Code: GR22D5001
Name of the Faculty: Dr.GVV	Satya	anarayana		Dept.: Civil Engineering
Designation: PROFESSOR				

The Schedule for the whole Course / Subject is:

		Duration	Total No.	
S. No.	Description	From	То	Of
				Periods
1.	Unit – I Introduction to Matrix methods of	26-10-22	15-11-22	12
	Analysis			
2.	Unit- II Assembly of stiffness matrices	16-11-22	29-11-22	08
3.	Unit-III Introduction about Flexibility matrix	30-11-22	19-12-22	11
	method(Force Method) And application to			
	indeterminate beams			
4.	Unit-IV Introduction about stiffness matrix	20-12-22	12-01-23	11
	method(Displacement Method) And application			
	to indeterminate beams			
5.	Unit-V Special analysis procedures Introduction	17-01-23	13-02-23	15
	about special analysis procedures, static			
	condensation and sub structuring in structures			

Total No. of Instructional periods available for the course: 57 Hours / Periods

SCHEDULE OF INSTRUCTIONS COURSE PLAN

Academic Year : 2022-23

Semester : I

Name of the Program: M.Tech

Course/Subject: Matrix Methods in Structural Analysis

Name of the Faculty: Dr.GVV Satyanarayana

Designation: PROFESSOR

UNIT NO.: I TO V

Year: I

Course Code: GR22D5001

Dept.: Civil Engineering

			No. of		Objectives &	References
Unit	Lasson	Date	Periods	Topics / Sub-Topics	Outcomes	(Text Book, Journal)
No.	No				Nos.	Page Nos.:to
	110.					
		26-10-2022		Unit – I Introduction to	1&1	Structural Analysis by
				Matrix methods of		S.S.Bhavikati,
				Analysis - Introduction		Advanced Structural
1.	1.		1	about Matrix Methods in		Analysis by
				Structural analysis		Asohk.K.Jainn and
						Structural analysis by
					1.0.1	C.S.Reddy
		27-10-2022	1	Determination of Static	1 & 1	
	2.		-	indeterminacy of structures		
		31-10-2022	1	Determination of Kinematic	1&1	
3.	3.		L L	indeterminacy of structures		
		01-11-2022	1	Determination of DOF of	1&1	
	4.		T	given structures		
		02-11-2022	1	Explain the co-ordinate	1&1	
	5.		T	system		
		03-11-2022		Structure idealization	1&1	
	6.		1			
		07-11-2022		Differentiate & relation	1&1	
	7		1	between Stiffness &		
	7.			Flexibility Matrix methods		
		08-11-2022		Explain general equations	1&1	
	0		1	for Flexibility & stiffness		
	8.			matrix methods		
		09-11-2022		Derivation of displacement	1&1	
	9		1	equations for truss element		
				equations for trass cientent		

10	10-11-2022	1	Discuss on element stiffness matrix, local and Global coordinates	1&1	
11	14-11-2022	1	Discuss old question papers	1&1	
12	15-11-2022	1	Solved old question papers	1&1	

Unit No.	Lesson	Date	No. of Periods	Topics / Sub-Topics	Objectives & Outcomes Nos.	References (Text Book, Journal) Page Nos : to
	110.					to
2.	1.	16-11-2022	1	Unit- II Assembly of stiffness matrices	2 & 2	Structural Analysis by S.S.Bhavikati , Advanced Structural Analysis by Asohk.K.Jainn and Structural analysis by C.S.Reddy
	2.	17-11-2022	1	Local matrix and global matrix for load	2 & 2	
	3.	21-11-2022	1	Displacement vectors (Stiffness matrix in global coordinates)	2 & 2	
	4.	22-11-2022	1	Explain direct stiffness method	2&2	
	5.	23-11-2022	1	General procedure of assembly of stiffness matrices	2 & 2	
	6.	24-11-2022	1	Discuss on boundary conditions	2 & 2	
	7.	28-11-2022	1	Discuss old question papers	2 & 2	
	8.	29-11-2022	1	Solved old question papers	2 & 2	

			No. of		Objectives	References
Unit			Periods	Topics / Sub-Topics	&	(Text Book,
No.	Lesson	Data			Outcomes	Journal)
	No.	Date			Nos.	Page Nos.:to
		30-11-2022		Unit-III Introduction about	3&3	Structural Analysis by
				Flexibility matrix method(S.S.Bhavikati,
	1			Force Method)		Advanced Structural
3.	1.		1			Analysis by
						Asohk.K.Jainn and
						Structural analysis by
						C.S.Reddy
		01-12-2022		Flexibility matrix approach	3&3	
	2.		1	to statically indeterminate		
				beams		
		05-12-2022		Methodology to calculate	3&3	
				redundant forces of beam at		
	3.		I	joints using Flexibility matrix		
				method		
		06-12-2022		Methodology to calculate	3&3	
		00 12 2022		radundant forces of beam	5 6 5	
	4.		1	redundant forces of beam		
		07 40 0000		method	2.0.2	
		07-12-2022		Analyze continuous beams by	3 & 3	
	_		1	using flexibility matrix		
	5.			methods carrying with		
				different loads		
		08-12-2022		Analyze continuous beams by	3&3	
				using flexibility matrix		
	6		1	methods carrying with		
	0.			different loads and sinking		
				supports		
		12-12-2022		Analyze plane truss by using	3&3	
	7		1	flexibility matrix methods		
	1.			carrying with different loads		
		13-12-2022		Analyze plane frame by using	3&3	
		10 12 2022	1	stiffness matrix methods		
	8.		1	carrying with different loads		
		14-12 2022		Discuss old question nanors	3&3	
	Q	14-12-2022	1	Discuss ou question papers	5005	
	10	15-12-2022	1	Solved old question papers	3&3	
	10.	10 12 2022	1	Solved old question papers	3 & 3	
	11	19-12-2022	1	Solved old question papers	5005	
1	11.	1	1	1	1	

			No. of		Objectives	References
Unit	Lasson	Date	Periods	Topics / Sub-Topics	&	(Text Book, Journal)
No.	No				Outcomes	Page Nos.:to
	110.				Nos.	
4.		20-12-2022		Unit-IV Introduction about	4 & 4	Structural Analysis by
				stiffness matrix method		S.S.Bhavikati,
	1.		1	(Displacement Method)		Advanced Structural
			1			Analysis by
						Structural analysis by
						C S Reddy
		21-12-2022		Flexibility matrix approach	4 & 4	C.D.Reddy
			1	to kinematically		
	2.		1	indeterminate beams		
		22-12-2022		Methodology to calculate	4 & 4	
		22-12-2022		support moments of beem at	+ & +	
	3.		1	ioints using stiffness matrix		
				method		
		02-01-2023		Methodology to calculate	4 & 4	
	1	02 01 2025	1	redundant forces of beam	1 6 1	
	ч.		1	using stiffness matrix method		
		03-01-2023		Analyze continuous beams by	4 & 4	
		05 01 2025		using stiffness matrix	1 6 1	
	5.		1	methods carrying with		
				different loads		
		04-01-2023		Analyze continuous beams by	4 & 4	
		04 01 2023		using stiffness matrix	1 6 1	
			1	methods carrying with		
	6.		1	different loads and sinking		
				supports		
		05-01-2023		Analyze plane truss by using	4 & 4	
		05 01 2025	1	stiffness matrix methods		
	7.		-	carrying with different loads		
		09-01-2023		Analyze plane frame by using	4 & 4	
		05 01 2025	1	stiffness matrix methods		
	8.		-	carrying with different loads		
		10-01-2023		Discuss old question papers	4 & 4	
	9.		1	Discuss on question pupers		
		11-01-2023	1	Solved old question papers	4 & 4	
	10.		1			
	11.	12-01-2023	1	Solved old question papers	4 & 4	

			No. of		Objectives	References
Unit	Lasson	Date	Periods	Topics / Sub-Topics	&	(Text Book, Journal)
No.	Lesson				Outcomes	Page Nos.:to
	INO.				Nos.	
5.		17-01-2023		Unit-V Introduction about		Structural Analysis by
				Special analysis procedures		S.S.Bhavikati ,
			1	1 7 1	5 & 5	Advanced Structural
	1		1		5 & 5	Analysis by
	1.					Asohk.K.Jainn and
						Structural analysis by
						C.S.Reddy
	2.	18-01-2023	1	What is static condensation?	5 & 5	
	3.	19-01-2023	1	Explain its importance with	5&5	
				suitable example		
	4.	23-01-2023	1	What is sub-structuring?	5&5	
	5.	24-01-2023	1	Its importance in structural	5&5	
				analysis		
		30-01-2023	1	What is effect due to initial	5 & 5	
	6		1	and thermal stress in	5 6 5	
				structures?		
		31-01-2023	1	Special analysis procedures	5 8 5	
	7		1	Introduction about shear	5 & 5	
				walls		
	Q	01-02-2023	1	Necessity of shear walls in	5 & 5	
	0			structures and their shapes		
		01-02-2023	1	Importance of shear walls in	595	
	9		1	structures and their location	5 & 5	
				in structures		
	10	02-02-2023	1	Structural behaviour of large	5 & 5	
	10.			frames with shear wall		
		06-02-2023	1	Structural behaviour of large	5 & 5	
	11.		_	frames without shear wall		
		07-02-2023	1	Approximate methods of	5 & 5	
	12.		-	analysis of shear walls	0.000	
	4.5	08-02-2023	1	Approximate methods of	5&5	
	13.		1	analysis of shear walls	5 0 5	
		09-02-2023	1	Approximate methods of	5 & 5	
	14.		1	analysis of shear walk	5 & 5	
		13-02-2023	1	Approximate methods of	5 & 5	
	15.	15 02 2025	1	analysis of shoer wells	5 & 5	
1		1		analysis of shear walls	1	

Signature of HOD

Signature of faculty

Date:

Date:

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED. 2. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED IN BOLD 3. MENTION THE CORRESPONDING COURSE OBJECTIVE AND OUT COME NUMBERS AGAINST EACH TOPIC.

EVALUATION STRATEGY

Academic Year	: 2022-23	
Semester	: I	
Name of the Program: M	.Tech (Structural Engineering)	Year: I
Course/Subject: Matrix I	Methods in Structural analysis	Subject Code(GR22D5001
Name of the Faculty: GV	V Satyanarayana	Dept.: Civil Engineering
Designation : PR	OFESSOR	
1. TARGET:		
A) Percentage for pass: 98	%	
b) Percentage of class: 1 st 1 st	class with distinction - 60% class - 40%	

2. COURSE PLAN & CONTENT DELIVERY

(Please write how you intend to cover the contents: i.e., coverage of Units/Lessons by lectures, design, exercises, solving numerical problems, demonstration of models, model preparation, experiments in the Lab., or by assignments, etc.)

3. METHOD OF EVALUATION

3.1
Continuous Assessment Examinations (CAE-I, CAE-II)

3.2 Assignments/Seminars

- 3.3 Droject Review/ Comprehensive viva-voce
- 3.4 🔲 Quiz
- 3.5 Semester/End Examination
- 3.6 Others

4. List out any new topic(s) or any innovation you would like to introduce in teaching the subjects in this Semester.

.....

Signature of HOD Date:

Signature of faculty Date:

GR22D5001 Matrix Methods in Structural Analysis	Course Outcomes				
Course Objectives	1	2	3	4	5
1	X				
2		Х			
3			X		
4				X	
5					Х

GR22D5001 Matrix Methods in Structural Analysis		Cour	se Outc	omes	
Assessment	1	2	3	4	5
1	X				
2		X			
3			X		
4				X	
5					X

GR22D5001 Matrix Methods in Structural Analysis	Course Objectives				
Assessment	1	2	3	4	5
1	X				
2		X			
3			X		
4				X	
5					X

TUTORIAL SHEET - 1

Academic Year	: 2022-23	Date: 15-11-2022
Semester	: I	
Name of the Program: M	Tech (Structural Engineering)	Year: I
Course/Subject: Matrix n	nethods in Structural Analysis	
Name of the Faculty: Dr.	GVV Satyanarayana.	Dept.: Civil Engineering

This Tutorial corresponds to Unit No. 1/Lesson_Introduction to Matrix methods of Analysis (GR22D5001)

Q1. What is static and kinematic indeterminacies? Explain both indeterminacies with suitable examples. Q2. Evaluate the static and kinematic indeterminacies of shown structures.

Q3. What is structural idealization and explain with neat figure.

Q4. Differentiate the flexibility matrix for the given co-ordinates.

Q4. Derive the relationship between stiffness and flexibility matrices. Q5. Derive displacement equations for beam and truss elements.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 1, 1

Outcome Nos.: <u>1, 1</u>

Signature of HOD

Signature of faculty

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

TUTORIAL SHEET - 2

Academic Year: 2022-23Date: 29-11-2022Semester: IIName of the Program: M.Tech (Structural Engineering)Year: ICourse/Subject: Matrix methods in Structural Analysis (GR22D5001)Dept.: Civil EngineeringName of the Faculty: Dr.GVV SatyanarayanaDept.: Civil EngineeringDesignation: PROFESSOR

This Tutorial corresponds to Unit No. 2/ Lesson Assembly of stiffness matrices

Q1. Explain the procedure in assembling stiffness.

- Q2. Write about transformation matrix and explain the terms local and global co-ordinates.
- Q3. Explain direct stiffness method
- Q4 Discuss on boundary conditions
- Q5 Solutions of stiffness matrix equations
- Q6. Write a computer algorithm to Analyse any structure with suitable example.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: <u>2</u> Outcome Nos.: <u>2</u>,

Signature of HOD

Signature of faculty

Date:

TUTORIAL SHEET - 3

Academic Year	: 2022-23	Date: 19-12-2022
Semester	: I	
Name of the Program:	M.Tech (Structural Engineering)	Year: I
Course/Subject: Matr	ix methods in Structural Analysis (GR22D5001)
Name of the Faculty:	Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation : I	PROFESSOR	

This Tutorial corresponds to Unit No. 3/ Lesson Introduction about Flexibility matrix method(Force Method) And application to indeterminate beams

- Q1. Explain the stepwise procedure to analyze the statically indeterminate structures using Force (Flexibility) matrix and Displacement (Stiffness) Methods.
- Q2. Analyse the propped cantilever beam given below using Force ethod.

Q2. Determine the support moments and reactions of fixed beam using flexibility methods.

Q3. Analyze the continuous beam using flexibility matrix method as shown in figure. Let I $_{ab}$ = 1.5 I $_{bc}$.

Q4. Analyse the portal frame as shown below using force method. Take EI as constant.

Q5. Analyse the truss as shown below using flexibility matrix method.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 3

Outcome Nos.: 3

Signature of HOD

Date:

Signature of faculty

TUTORIAL SHEET - 4

Academic Year	: 20)22-23	Date: 12-01-2023	
Semester	:	Ι		
Name of the Program: M.	Tech (Structur	al Engineering)	Year: I	
Course/Subject: Matrix n	nethods in St	ructural Analysi	is (GR22D5001)	
Name of the Faculty: Dr.C	SVV Satyanar	ayana.	Dept.: Civil Engineering	
Designation : F	ROFESSOR			

This Tutorial corresponds to Unit No. 4/ Lesson Introduction about stiffness matrix method(Displacement Method)

- Q1. Explain the stepwise procedure to analyze the statically indeterminate structures using displacement or Stiffness matrix and Displacement (Stiffness) Methods.
- Q2. Analyse the propped cantilever beam given below using Displacement method.

Q2. Determine the support moments and reactions of fixed beam using stiffness matrix methods.

Q3. Analyze the continuous beam using flexibility stiffness method as shown in figure. Let I $_{ab} = 1.5$ I $_{bc}$.

Q4. Analyse the portal frame as shown below using force method. Take EI as constant.

Q5. Analyse the truss as shown below using stiffness matrix method.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related. Objective Nos.: $\underline{4}$ Outcome Nos.: $\underline{4}$

Signature of HOD

Signature of faculty

TUTORIAL SHEET - 5

Academic Year	: 2022-23	Date: 13-02-2023
Semester	: I	
Name of the Program: M.Tech	(Structural Engineering)	Year: I
Course/Subject: Matrix metho	ds in Structural Analysis (GR22D5001)	
Name of the Faculty: Dr.GVV	Satyanarayana.	Dept.: Civil Engineering

Designation : PROFESSOR

This Tutorial corresponds to Unit No. 5/ Lesson Special analysis procedures

Q1. Describe the Importance about special analysis procedures using in structural analysis.

Q2. What is static condensation and explain its importance

Q3. Explain static condensation with suitable example

Q4. What is sub-structuring and write Importance of sub structuring in structural analysis

Q5. What is effect due to initial and thermal stress in structures?

Q6.What are the uses of shear walls and their location in large structures?

Q7. What are the varieties or shapes of shear walls?

Q8. Describe the behaviour of shear walls in large frames with and without shear walls.

Q9. Explain the different method in analysis of shear walls.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related. Objective Nos.: $\underline{5}$ Outcome Nos.: 5

Signature of HOD

Signature of faculty

ASSIGNMENT SHEET – 1

Academic Year	: 2022-23	Date: 15-11-2022
Semester	: I	

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: Matrix Methods in Structural Analysis (GR22D5001)

Name of the Faculty: Dr.G.V.V. Satyanarayana Dept. Civil Engineering

Designation : PROFESSOR

This Assignment corresponds to Unit No.1

- Q1. What is Static and kinematic indeterminacy of structures? Derive static and kinematic indeterminacy for given structures.
- Q2. Differentiate between static determinate and indeterminate structures.
- Q3. What is transformation matrix and its use?
- Q4. Deduce the relationship between flexibility and stiffness matrices.
- Q5. Derive displacement equations for truss and beam elements.
- Q6. Define the terms dof and redundants at supports.
- Q7. Differentiate local and global co-ordinates and how they are interconnected

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.:

Outcome Nos.:

Signature of HOD

Signature of faculty

Date:

ASSIGNMENT SHEET – 2

Academic Year	: 2022-232	Date: 29-11-2022
Semester	: I	
Name of the Program: M.Tech (Structural Engineering) Civil	Year: I
Course/Subject: Matrix Method	ds in Structural Analysis (GR22D5001)	
Name of the Faculty: Dr.G.V.V.	Satyanarayana	Dept. Civil Engineering
Designation : PROF	FESSOR	
This Assignment corresponds to	Unit No-2.	
Q2. Explain the procedure to dec Q3. Derive stiffness matrix for a Q4. What is Rank of matrix and Q5. What is semi band width an Q6. Write a computer alogarithm Q7. How to assemble the stiffnes Q8. Discuss on various boundary c	duce a stiffness matrix using direct stiffness any structure with assigned co-ordinates. evaluate the rank of matrix for the given d explain its importance in structural analy to deduce final forces in a truss member as matrices? conditions used FEM.	ss method. matrix? ysis? using stiffness matrix approach.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: <u>2</u>.....

Outcome Nos.: <u>2</u>.....

Signature of HOD

Signature of faculty

Date:

ASSIGNMENT SHEET – 3

Academic Year	: 2022-23	Date: 1	13-12-2022
Semester	: I		
Name of the Program: M.Tech (Structural Engineering)	Year:	Ι
Course/Subject: Matrix Method	ds in Structural Analysis (GR22D5001)		

Name of the Faculty: Dr.G.V.V. Satyanarayana

Dept. Civil Engineering

Designation : PROFESSOR

This Assignment corresponds to Unit No.3

Q1. Develop a flexibility matrix for the structure with assigned co-ordinates.

Q2. Analyse the propped cantilever beam using flexibility matrix method as shown below.

Q3. Determine the support moments and also draw SFD and BMD's of a fixed beam as shown in the figure below using force method.

Q3. Analyze the continuous beam as shown in figure below using flexibility method if the support C sinking 10 mm. Take $EI = 18000 \text{ kn}\text{-m}^2$.

Q4. Explain the stepwise procedure to analyze a portal frame in flexibility matrix method. Q5. Analyse the truss as shown below using force method.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 3

Outcome Nos.: <u>3</u>.....

Signature of HOD

Date:

Signature of faculty

ASSIGNMENT SHEET – 4

Academic Year	: 2022-23	Date:	12-01-2023
Semester	: I		
Name of the Program: M	.Tech (Structural Engineerin	g)	Year: I
Course/Subject: Matrix N	Methods in Structural Analys	<u>is (GR22D5001)</u>	
Name of the Faculty: Dr.	G.V.V. Satyanarayana	Dept. Civil Engineering	

Designation : PROFESSOR

This Assignment corresponds to Unit No-4.

- Q1. Develop a stiffness matrix for the structure with given dof's.
- Q2. Analyse the propped cantilever beam using stiffness matrix method as shown below.

Q3. Determine the support moments and also draw SFD and BMD's of a fixed beam as shown in the figure below using displacement method.

Q3. Analyze the continuous beam as shown in figure below using stiffness matrix method if the support C sinking 10 mm. Take $EI = 18000 \text{ kn} \cdot \text{m}^2$.

Q4. Explain the stepwise procedure to analyze a portal frame in stiffness matrix method. Q5. Analyse the truss as shown below using force method.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: <u>4</u>.....

Outcome Nos.: <u>4</u>.....

Signature of HOD

Date:

Signature of faculty

ASSIGNMENT SHEET – 5

Academic Year	: 2022-23	Date: 13-02-2023				
Semester	: I					
Name of the Program:	M.Tech (Structural Engineering)	Year: I				
Course/Subject: Matrix	Methods in Structural Analysis	<u>(GR22D5001)</u>				
Name of the Faculty: <u>D</u>	r.G.V.V. Satyanarayana	Dept. Civil Engineering				
Designation	: PROFESSOR					
This Assignment corres	ponds to <u>Unit No-5.</u>					
Q1. Explain the Importa Q2. What is static conder Q3. Explain static conder Q4. What is sub-structuri Q5. What is effect due to Q6. Discuss in analysis Q7. Explain the term st Q8. What is shear wall Q9. Explain the role of Q10. Describe the beha Q11. Explain the differe	Ince about special analysis procedur hsation and explain its importance? Insation with suitable example. Ing and explain the Importance of su initial and thermal stress in structur of special structures. Atic condensation and describe w and list various types of shear wa shear walls in large structures an viour of shear wall in large frame ent analysis methods of shear wa	es. Ib structuring in structural analysis? es? ith suitable example. Ils. d also explain with their locations. s with and without shear walls. lls.				
Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.						
Objective Nos.: <u>5</u>						

Outcome Nos.: <u>5</u>

Signature of HOD

Signature of faculty

Date:

.

RUBRIC SHEET

Academic Year: 2022-23Semester: IName of the Program:M.Tech Structural EngineeringCourse/Subject:Matrix Methods in Structural AnalysisName of the Faculty:Dr.G V V Satyanarayana

Year: <u>I</u> Course Code: **GR22D5001** Dept.: <u>Civil Engineering</u>

Designation: Professor

Objective: To learn basics and concepts of Structural analysis.

Student Outcome: Behavioural studies or analyze the structural elements under loading and study different parameters such as induced forces, bending moments, shear forces, stresses, strains, deflection etc.,

			Beginning	Developing	Reflecting Development	Accomplished	Exemplar y	Score
S. No	Name of the Student	Performance Criteria	1	2	3	4	5	
1	22241D 2004	Analysis of structural elements The level of knowledge on types structures such as arches, statically determinate and indetermin ate beams	Low level of knowledge on calculation of support reactions Low level of knowledge on types structures such as arches, statically determinate and indeterminat e beams	Able to discuss the principles of energy theorems Able to discuss types of structures and their importanc e in civil engineeri ng constructi ons	Ability to explain the application of energy theorems Ability to explain types of structures and their importance in civil engineering constructio ns	Full knowledge on application of energy theorems Full knowledge on types of structures and their importance in civil engineering construction s	Analyzing and implement in structures Analysing and application of knowledge on types of structures and their importance in civil engineering constructions	5
		The level of knowledge to analyse various engineering structures.	Low level of knowledge to analyse various engineering structures.	Ability to discuss and to study the various engineeri ng structures	Ability to explain various engineering structures.	Full knowledge on various engineering structures.	Analysing and implementing the knowledge of various engineering structures.	3
							Average Score	4

MAPPING

GR22D5001 Matrix Methods in Structural Analysis	Course Outcomes				
Course Objectives	1	2	3	4	5
1	X				
2		Х			
3			Х		
4				X	
5					X

GR22D5001 Matrix Methods in Structural Analysis	Course Outcomes				
Assessment	1	2	3	4	5
1	X				
2		X			
3			X		
4				X	
5					Х

GR22D5001 Matrix Methods in Structural Analysis	Course Objectives				
Assessments	1	2	3	4	5
1	X				
2		Х			
3			Х		
4				X	
5					Х

Course	Program Outcomes					
	1	2	3	4	5	6
GR22D5001 Matrix Methods in Structural Analysis	X	X	X	X	X	X

GR22D5001 Matrix Methods in Structural Analysis	Program Outcomes		nes			
Course Outcomes	1	2	3	4	5	6
Evaluate the static and kinematic indeterminacy and generate stiffness and flexibility matrices.	Μ		Μ	М	Н	М
Analyse the skeleton structures using stiffness method under different coordinate system.	Μ		Μ	Μ	Μ	М
Use flexibility matrix method to analyse different structures.	Μ		Η	М	Μ	М
Use stiffness matrix method to analyse different structures.	Μ	Μ	Η	Μ	Η	М
Analyse various types of structural members using special analysis procedures and shear walls in multi storied constructions	М	М	М	М	М	М

M.Tech I Year I Semester Regular Examinations, March 2023

MATRIX METHODS IN STRUCTURAL ANALYSIS

(Civil Engineering)

Time: 3 hours

Note:

- 1. Please verify the regulation of question paper and subject name
- 2. Question Paper Consists of Part A and Part B
- 3. Assume required data, if not given in the question

Bloom's (Taxonomy) Levels	Percentage of weight age	Marks allotted	
BL1 (Knowledge: Remember)	30 to 40	18 ± 0.24	
BL2 (Comprehension: Understand)	30 10 40	18 10 24	
BL3 (Application: Apply)	60 to 70	26 ± 0.12	
BL4 (Analysis: Analyze)	(Analysis: Analyze)		
Total	100	60	

PART – A (BL1 to BL4) () r . . .

	(Answer ALL Questions)	(10x1 = 10 Marks)
1	What is static and kinematic indeterminacies?	BL-1 CO11M
2	Explain about transformation matrix in analysis of structures.	BL-2 CO11M
3	How to differentiate between local and global coordinates.	BL-1 CO21M
4	The stiffness matrix of a beam is given as $\begin{bmatrix} 4 & -1 \\ -1 & 4 \end{bmatrix}$, when the nodal	BL-1 CO21M
	displacements are $\begin{bmatrix} 1\\2 \end{bmatrix}$ find the nodal forces	
5	Show the released structure for the beam given below:	BL-1 CO31M
6	What is the static in determinacy of given beam below, if only transverse vertical loads are considered:	BL-1 CO3 1 M
	A B C D	
7	How to find the kinematic in determinacy of a plane truss?	BL-1 CO4 1 M
8	Find out the kinematic in determinacy of the given structure:	BL-1 CO4 1 M
9	What is sub structuring?	BL-1 CO5 1 M
10	List out the advantages shear walls.	BL-1 CO5 1 M

Page 1 of 3

Max Marks: 60

PART – B (BL1 to BL4) (Answer ALL Questions)

(5X10 = 50 Marks)

Each Question Carries 10 marks and may have a, b. as sub Questions

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) I M.Tech. I Semester 2022-23 I Mid-Term Examinations – DEC 2022

2 2 2 4 1 D

Name:	_	Branch/Section: Civil Engineering
Subject: Matric Methods in Structural	Analysis	Code: GR22D5001
Branch: Civil Engineering		Max Marks: 30
Date: 24 - 12-2022 (FN)		Duration: 120 min.
	Objective	(10 X 1 = 10 Marks)
	(Answer All Ouestions) Time: 15 min.

Q. No.	Unit	CO	BL*	PI
1	A simply supported beam having an internal hinge is a []	CO1	1	5.3.1
	a) Structure b) Mechanism c) Elastic body d) None of the above			
2	A statically indeterminate structure is the one which []	CO1	1	5.2.2
	a) Cannot be analysed			
	b) Can be analysed using equations of static's only			
	c) Can be analysed using equations of static's and compatibility only			
	d) Can be analysed using equations of compatibility only			
3	Total dof at nay joint for pin joint of a space frame[]a) 2b) 3c) 6d) 4	CO1	1	5.2.2
4	Flexibility [f] or $[\lambda]$ means[CO1	2	5.2.2
	a) $\frac{\Delta}{E}$ b) $\frac{\theta}{M}$ c) Either a or b d) None of the above			
5	Moment required to get unit slope when far end is hinged []	CO2	1	5.2.2
	a) $\frac{4\text{EI}}{l}$ b) $\frac{3\text{EI}}{l}$ c) $\frac{\text{EI}}{l}$ d) Either b or c			
6	Stiffness [k] means [CO2	1	5.2.2
	a) $\frac{F}{A}$ b) $\frac{M}{\theta}$ c) Either a or b d) None of the above			
7	What is static indeterminacy of the given continuous beam in case General and	CO2	1	5.2.2
	when only Vertical forces are considered (EI = Constant) []			
	5 kN/m 10 kN/m			
	4m 7 5m 7			
	a) 3 & 2 b) 2 & 2 c) 3 & 3 d) 2 & 1			
8	Rotation contribution for above continuous beam at joint B is equal to []	CO2	1	5.3.1
	a) $\frac{55.41}{FI}$ b) $\frac{65.41}{FI}$ c) $\frac{20.625}{FI}$ d) $\frac{26.625}{FI}$			
9	If $D_s < D$ s then which matrix method is preferable []	CO3	2	5.3.1
	a) Flexibility b) Stiffness c) Either a or b d) None of the above			
10	The size of flexibility matrix depends on []	CO3	2	5.3.1
1	$(a) D_S$ (b) D_k (c) dof (d) External forces acting on beam			

Gokaraju Rangaraju Institute of Engineering and Technology

(Autonomous)

I M.Tech. I Semester 2022-23 I Mid-Term Examinations – DEC 2022

Subject: Matric Methods in Structural Analysis

Code: GR22D5001

Branch: Civil Engineering

Date: 24-12-202#(FN)

Subjective (Answer Any FOUR Questions)

(4 X 5 = 20 Marks) Time: 105 min.

Q. No.	Unit	Μ	CO	BL*	PI
	a) What is Static and kinematic indeterminacy of structures?	2	CO1	1	5.2.2
1	b) Compare local and global co-ordinates and how they are interconnected	3	CO1	2	3.2.1
2	a) Explain briefly transformation of coordinates with suitable figure.	2.5	CO1	1	3.2.2
	b) Define the terms dof and redundants at supports.	2.5	CO1	1	5.2.2
3	Develop stiffness matrix for the given structure using Direct Stiffness method or approach f_{1} f_{2} f_{2} f_{3} f_{4} f_{1} f_{2} f_{4} f_{1} f_{4} f_{1} f_{4} f	5	CO2	3	5.3.1
4	a) How to assemble the stiffness matrices?	2	CO2	1	5.2.2
	b) Assemble $[k_1]$ and $[k_2]$ of the 2 element frame as shwn in figure below to generate $[k]$ of the system. ake $[k_1] = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$ and $[k_2] = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$	3	CO2	3	5.3.1

5	a) Find the static kinematic in determinacy indeterminacy of the structures given below:	3	CO1	1	5.2.2
	b) Develop the flexibility matrices for the given co-ordinate system:	2	CO3	3	5.3.1
6	a) The stiffness matrix of a beam is given as $\begin{bmatrix} 4 & 0.5 \\ 0.5 & 8 \end{bmatrix}$, when the nodal forces are $\begin{bmatrix} 5 \\ 2 \end{bmatrix}$ find the nodal displacements	2	CO2	1	5.1.1
	b) Analyse the propped cantilever beam as shown below using flexibility matrix method. Assume span length as l	3	CO3	4	5.3.1
	20 kN/m A				

1

2

3

4

5

6

7

8

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) I M.Tech. I Semester 2022-23 II Mid-Term Examinations - MARCH 2023 2 2 2 4 1 D Name: ____ **Branch/Section:** Civil Engineering Subject: Matric Methods in Structural Analysis Code: GR22D5001 **Branch:** Civil Engineering Max Marks: 30 **Date: 0**2 - 03-2023 (FN) Duration: 120 min. (10 X 1 = 10 Marks) Objective Time: 15 min. (Answer All Ouestions) Q. No. Unit CO BL* PI Match the following from the following for coefficient of $f_{22} =$ Γ CO3 5.2.1 1 a) $\int_0^x \frac{m_1 m_1}{EI}$ b) $\int_0^x \frac{m_1 M}{EI}$ c) $\int_0^x \frac{m_2 m_2}{EI}$ d) $\int_0^x \frac{M}{EI}$ The number reactive force at hinged end support will be [] CO3 1 5.2.2 a) 0b) 1c) 2d) 3As per property of stiffness matrix the co-efficient of $k_{ij} =$ [] 1 5.2.1 CO4 2 5.1.2 1-12, 1, EI 12, $\frac{4 \text{ EI}}{l} \qquad \text{b)} \frac{6 \text{ EI}}{l^3} \qquad \text{c)} - \frac{12 \text{ EI}}{l^3} \qquad \text{d)} - \frac{4 \text{ EI}}{l^2}$ What is the co-efficient k₁₁ for the beam shown in Q No.4 with dof's [] CO4 1 5.1.2 a) $-\frac{6 \text{ EI}}{l^2}$ b) $\frac{12 \text{ EI}}{l^3}$ c) $-\frac{12 \text{ EI}}{l^3}$ d) $\frac{4 \text{ EI}}{l}$ What is the dof for the given continuous beam [CO4 1 5.1.2 a) 3 b) 2 c) 1 d) 5 Estimate the relative stiffness for the member if far end is hinged CO4 Γ 1 1 5.1.2 a) $\frac{I}{L}$ b) $0.5 \frac{I}{L}$ c) $0.75 \frac{I}{L}$ d) $1.5 \frac{I}{L}$ Estimate the relative stiffness for the member if far end is fixed[] CO4 1 5.1.2

a) $\frac{I}{L}$ b) $0.5 \frac{I}{L}$ c) $0.75 \frac{I}{L}$ d) $2 \frac{I}{L}$

9	In static condensation the known displacements kept atof displacement matrix []				CO5	2	5.1.2
	a) Top	b) Centre	c) Bottom	d) Any where			
10	What happened	the intensity therma	al stresses in structura	al members when	CO5	1	5.2.1
	members are free	e to move?		[]			
	a) Increase	c) decrease	c) No change	d) Either a or b			

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) I M.Tech. I Semester 2022-23 II Mid-Term Examinations – MARCH 2023

Subject: Matric Methods in Structural Analysis

Code: GR22D5001

Branch: Civil Engineering

Date: 02-03-2023 (FN)

Subjective	
(Answer Any FOUR	Questions)

(4 X 5 = 20 Marks) Time: 105 min.

Q. No.	Unit	Μ	СО	BL*	PI
1	Analyze the given frame using force method as shown in figure below:	5	CO3	4	5.2.1
	12 kN 1m 3m 4m EI is constant 777				
2	Analyze the given frame using displacement method as shown in figure below:	5	CO4	4	5.2.1
	$A \xrightarrow{B} C \xrightarrow{D} EI = Constant$				
3	Analyse the plane truss using as shown below stiffness matrix approach. The supports a, b & c are hinged.	5	CO4	4	5.2.1
	A B C 3 m 60° 30° AE = Constant 5 kN				
4	a) What is static condensation?	2	CO5	1	5.1.3

	b) How initial and thermal stresses are influenced in the structures?	3	CO5	1	5.1.2
5	What are the different methods of analysis of shear walls and explain any two of them?	5	CO5	1	5.2.2
6	a) How to solve a plane truss using flexibility matrix method? (Only procedure steps)	2.5	CO3	4	5.2.2
	b) Generate stiffness matrix for the given below frame: .	2.5	CO4	4	5.2.2
	10 kN 13 EI				
	4 m EI				
	\rightarrow				

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

	M.Tech Structural Engg. I yr-I Sem- GR22 2022-23				
	Matı	ix Methods in Structural Analysis GR22D500	1 (MID-I)		
S.No	Roll No	Name of Student	Maximum Marks (30 M)		
1	22241D2001	ADDAGATLA MAHESHKUMAR	20		
2	22241D2002	AHMED ABDUL AZEEM	14		
3	22241D2003	BAIRAPAKA BHARAT	8		
4	22241D2004	BARLAPUDI ACHSAHKEERTHANA	26		
5	22241D2005	CHAKALI SOWMYA	13		
6	22241D2006	CHAPPIDI NARESH	14		
7	22241D2007	DANTHALA HARIDEEPKUMAR	17		
8	22241D2008	DEVIREDDY ANISH	15		
9	22241D2009	DHARAVATHNAGENDAR	14		
10	22241D2010	GANGAPURAM SUSHANTH REDDY	12		
11	22241D2011	JEREPOTHULARAVALIKA	12		
12	22241D2012	KADABOHINASAIPAVAN	9		
13	22241D2013	KASUMURU BHARAT KUMAR	14		
14	22241D2014	MACHARLA SRINIVAS	6		
15	22241D2015	MALLI SREENIVASULU	20		
16	22241D2016	SHAIK ABDUL MUQEED	17		
17	22241D2017	SHAIK ZABI ULLAH	7		
18	22241D2018	SONWANE SAHILSHIVAJIRAO	22		
19	22241D2019	LINGAM LAKSHMI NARAYANA	4		

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

	M.Tech Structural Engg. I yr-I Sem- GR22 2022-23					
	Matr	ix Methods in Structural Analysis GR22D5001	(MID-II)			
S.No	Roll No	Name of Student	Maximum Marks (30 M)			
1	22241D2001	ADDAGATLA MAHESHKUMAR	20			
2	21241D2002	AHMED ABDUL AZEEM	15			
3	21241D2003	BAIRAPAKA BHARAT	5			
4	21241D2004	BARLAPUDI ACHSAHKEERTHANA	26			
5	21241D2005	CHAKALI SOWMYA	14			
6	21241D2006	CHAPPIDI NARESH	18			
7	21241D2007	DANTHALA HARIDEEPKUMAR	14			
8	21241D2008	DEVIREDDY ANISH	15			
9	21241D2009	DHARAVATHNAGENDAR	12			
10	21241D2010	GANGAPURAM SUSHANTH REDDY	15			
11	21241D2011	JEREPOTHULARAVALIKA	12			
12	21241D2012	KADABOHINASAIPAVAN	21			
13	21241D2013	KASUMURU BHARAT KUMAR	17			
14	21241D2014	MACHARLA SRINIVAS	6			
15	21241D2015	MALLI SREENIVASULU	23			
16	21241D2016	SHAIK ABDUL MUQEED	17			
17	21241D2017	SHAIK ZABI ULLAH	17			
18	21241D2018	SONWANE SAHILSHIVAJIRAO	26			
19	21241D2019	LINGAM LAKSHMI NARAYANA	8			

STRUCTURE:

Ma Poil and Ed.

A structure refers to a system of connected parts used to support

to the Marsh same

Island Islaid bies

when any elastic body, each subjected to a system of loads and deformation takes place and the resistance is setup against the deformation, then elastic body is known as structure. Clarsification of structure:

1. Sceletal structures

2 Surface structures and sound, sould hadren lapsilia

3. Solid - structures.

1. Skeletal structures: Structures can be idealized to a Series of straight or curved lines Ex: Bearing frames.

2. Surface Structures: Structures which can be idealised to plane or curved Surfaces-Gn: slabs and shells.

Angle of Inclination <30 flat nots. Angle of Inclination >30 fitched roofs.

3. Solid Structures: Structures which can neither be idealised to a skeletal nor plane curved Surfacer. Gn: Massive Dimensions [All the dimensions are predominant]

-> Explain classification of siceletal structures. Based on types of Joints:

() Pinjointed frames:

In this joint members are connected by means of Pinjointed. This frame members can support only axial force and all external forces should act at member joints.

(i) Rigid jointed frames:

These frames resist external forces by developing BM, SF, AF and twisting moments in the members of frames. Based on dimensions:

(1) Plane frames:

All the members of the plane frame as well as enternal loads are assumed to be in one plane. (0) pipjointed plane frame: All the members can carry azial forces only

(b) Rigid jointed plane frame: These members can carry AF, -SF, BM and twisting moment.

(1) Space frames: All the members of the plane donot lie is one plane it lies is another plane. Very often it is also the Combination of Series of planes. (a) Pisjoisted Space frame: Members will allow azial forces only

(b) Rigid jointed space frame: These members can carry AF, SF, BM and twitting moment

List out equations of static equilibrium:
 Equations of static equilibrium

for plane frame: In case of plane fram Subjected to in in-plane external forces.

Ex: Xy plane. EFx =0 ZH=0 ZFy=0 ZV=0 ZFz=0 ZM=0

for space frame: $\Sigma F_{2} = \Sigma F_{2} = 0$ $\Sigma M_{R} = \Sigma M_{Y} = \Sigma M_{Z} = 0$

Scanned by CamScanner

Prairie (D

-> What is statically determinate Structure. These Structures can be analysed with available equilibrium equations called as statically determinate structure These structures undergo finite deformation before the Conditions of equilibrium are satisfied the deflection. Ex: A cantilever beam, Simply Supported beam and a A suspension cable and 3-hinged Arch. ć, the static Indeterminici 3+0. static Indeter money 22 - 22 (VI) (111) Mong = ani nalabat Ea: Ric & Calculated as Statically Indeterminant: Those structures cannot be analysed with available Startic equilibrium equations. In this structure the reaction Components and internal stresses cannot be analysed with available static equilibrium condition. These structures can analyse with additional equation based on condition of Compatibility Consistency Consistency deformations (0) votations, horizontal (00) south thread bipte Vertical displacement. How to calculate static Indeterminate structures. Degree of static indeterminacy is also known as Inter's a redundancy.

Equations in addition to static equilibrium equation necessary to complete analyse statically indeterminate structure. It is denoted by Ds

Ds = no.of unknowns - static equilibrium equations. Note: static equilibrium equations are two when only Vertical forces are considered.

EV =0, EM=0.

→ Formulate the static Indetermiancy (on Formulation of static Indetermancy.

 $D_S = D_{Se} + D_{Si}$

where, Dse = External Indeterminacy (Due to support reaction) Dsi = Internal Redundancy. Ga: Dse is calculated as false

Dse = r-6 for space frame Dse = r-3 for plane frame

 δ - unknown forces at Supports Dsi = Static Enternal redundancy Dsi = m - (2j - 3) for Pinjointed plane frame Dsi = m - (3j - 6) for pinjointed space frame. For rigid justed plane frame - 3C For rigid justed plane frame - 6C NOTE: displicted frame frame - 6C

NOTE: simplified formulas including external as well as internal

Scanned by CamScanner

1) Pipjointed plane frame $D_{s} = 7 - 3 + m - 2j + 3$ $D_s = (r+m) - 2j$ 2) Pin jointed Space frame $D_{s} = r - 6 + m - 3j + 6$ 1-2 $D_{S} = (m+x) - 3\hat{j}$ (3m+r)-3j for sigial jointed plane frame (6m+r)-6j for rigid jointed space frame. -> What is Cantilever tree Concept. Cantilever tree Concept: The total degree of indeterminacy of nigid frame can Obtained by wing the statical indeterminacy criterion and be alternative method is suggested here, the basis is that by culting a Section, we are releasing the 3 resultants as shown in fig. - (C)) JM -> There are arrial forces (H), shear force (V), BM(M) -> Then total degree of Indeterminacy A D Ds = no. of cuts K3 = 3c for plane = GC for Space. NOTE ! whenever is a Internal hinge the static indeterminiacy will reduce.

is Because the moment can't be transmitted from one end to another end.

(ii) Internal links (on Bars: A link is a short bar with pin at each end. By this internal links the static indeterminionly

$$m = 6 \qquad D_{5} = (3m + v) - 3j$$

$$j = 6 \qquad = (18 + 4) - 18$$

$$= 4$$

> Groduale the static indelerminacy of a given structure

$$m = 3, j = 8, v = 9$$

$$D_{5} = 3c - 0 = 3(2) = 6.$$

$$D_{5} = (3(3) + 9) - 3(8)$$

$$= 36 - 24 = 6.$$

> Graduale the static indelerminacy of a given structure

$$n = 3, j = 4, v = 3$$

$$D_{5} = (3m + v) - 3j$$

$$= (3m + v) - 3j$$

$$= (3(2) + 3) - 3(v)$$

$$= 16 - 12 = 4$$

> The place frame static in the fig i Graduale the statistity
and indeterminacy of the structure

$$n = 3, j = 4, v = 3$$

$$D_{5} = 3c - 1 = 2(v) = 1 = 2.$$

$$m = 3, j = 4, v = 3, R = 1$$

$$D_{5} = (3m + v) - 2j - R$$

$$(3(3) + 3) - 3(v) = (2 - 12 - 1) = -1$$

$$3(v - 1)$$

$$3(v - 1)$$

Scanned by CamScanner

Degrees of freedom for typical joints Typical joint D.OF Types of deflection. $\Delta H(\Delta x), \Delta v(\Delta y), \Theta$ Free end A-3 thinge at (2 AV, AH, O. + internal hinge 3t2=5 $\Delta H, \Delta V, 30 (01, 04, 04)$ $\frac{1}{\sqrt{2}}$ Internal hinge 4- $\Delta H_1 \Delta V_1 20$ The Closed damper 4 DH1, DH2, DV, 0. that stramped in presin at since -112 open damper 4 2 DV, DU, O -> U 31/8/18 How to formulate a kinematic indeterminacy of the structure. Formulation of Linematic Endeterminacy (DK): (1) for a sigid jointed plane frames, DK = NJ - Cwhere, N=no.of degree of freedom of each joints J = no · of joints C = no. of reaction Components NOTE: C=r, if the members are extensible C=m+r, if the extension of the members 'M' are neglected. i) Dk = 3j-r (for rigid jointed plane frame) and considering arial strains of members also.

→ By observing the following frame shown below,
Evaluate the static indeterminacy and kinematic indetermin

$$m=9_1$$
, $r=1+2=3$, $j=6$.
 $D_S = (m+r) = 2j$
 $9+3 = 2(465)_2(6)$
 $D_S = (m+r) - 2j = 12-12$
 $= 0$ (statically determinate)
 $f O_S = (\cdot)$ deficient
 $= (\cdot)$ Reducted by H develops internal stresses
 $D_E = 2j-r$
 $= 2(6)-3$
 $= 12-3=9$
 H is (cinematically indeterminacy of the frame as shown in
the fig.
 $no \circ of$ mgid joint = 5
 \rightarrow whenever, there is a pinjoint
it is not connected to another πrr , πrr ,
 $no \circ of$ untinouns at longe internal = 4
 $no \circ of$ untinouns at pin joint = 5:
 $D_E = 0, 0, 2$

Stephes
Stiffness tractive method:
The statically indeterminate structures are analyzed
by flexibility matrix method.
If any structure is kinematically indeterminate then
the structure (an be analyzed by stiffness matrix method
NOTE: If DKJ > DSI, then flexibility matrix method
is usedut.
I/Ly Jf DKJ < DSI, then stiffness matrix method is useful.

$$Matrix = 3$$
:
 $D_S = (3m+r) - 3j$ $f = 4$
 $= 3 \cdot 12 - 6$
 $= 6 \cdot (10tal)$
 $= 12 - 6$
 $= 6 \cdot (10tal)$
 $= 3 \cdot 12 - 6$
 $= 6 \cdot (10tal)$
 $= 3 \cdot 12 - 6$
 $= 6 \cdot (10tal)$
 $= 3 \cdot 12 - 6$
 $= 6 \cdot (10tal)$
 $= 3 \cdot 12 - 6$
 $= 6 \cdot (10tal)$
 $= 3 \cdot 12 - 6$
 $= 6 \cdot (10tal)$
 $= 3 \cdot 12 - 6$
 $= 6 \cdot (10tal)$
 $= 3 \cdot 12 - 6$
 $= 6 \cdot (10tal)$
 $= 3 \cdot 12 - 6$
 $= 6 \cdot (10tal)$
 $= 3 \cdot 12 - 6$
 $= 6 \cdot (10tal)$
 $= 3 \cdot 12 - 6$
 $= 6 \cdot (10tal)$
 $= 3 \cdot 12 - 6$
 $=$

-> thow to generate the stiffness matrix. 1. The Size of stiffners matrix depende on degree of kizematic indetermisancy;

2. The element stiffness matrix is generated or determined by applying unit displacement at each node and determining the forces. at each coordinate to sustain the displacement (As per stiffness, k=P) 3. Similarly the element stiffness matrin is generated by applying unique notation at each node and determining moment at each coordinate i.e., $K = \frac{10}{9}$ The moment required to get unique sotation. if for end is fined = 4EI.0 M-461.0 If the far end is hinged

DM: SET O the $M = \frac{3EI}{I} \cdot 0$ dizor M_{\pm} or $\frac{6EI}{1^2}$, S. Melorsparet & bottom production M_{12ET} S Coldizor Min GEL . S.

ZV=0. Rat Rb=0 sim

EM6 =0

C 12 1241

=0. $x + R_{b} = 0$ $Ra = -R_{b} \rightarrow 0$ $H = R_{a} + \frac{6k1}{10} = 0$ $R_{a} = -\frac{2k1}{10} = 0$ $R_{b} = \frac{6k1}{10} = 0$ $R_{b} = \frac{6k1}{10} = 0$

a preferable

 $Ra(1) + \frac{4EI}{1} \cdot \theta + \frac{2EI}{1} \cdot \theta + (Rbx0) = 0$ $R_{a}(t) = -\frac{6EI}{1}$ of that is that the bottom wisto

 $R_{q} = -\frac{G \in I}{I^{2}} \cdot O\left(\psi\right)$

$$R_{b} = -\left(-\frac{6}{12} \cdot 0\right)$$

$$R_{b} = \frac{6eT}{12} \cdot 0 \text{ (f)}$$
Two equivabile parallel forces are called Couple.
Note: In shiftness matrix method consider every joint
as fixed.
= Determine shiftness matrix for the beam as shown is fig-
with degrees of freedom as shown.

$$\frac{1}{4\pi}$$

$$I = 2$$

$$Degree of freedom = 2.$$

$$A = 1$$

$$Size of Shiftnessmatrix is 2x2.
E = 2.
$$J = 3.$$
Step 1: Apply unit diplacement (sortative) at 1 only and
restrais A. form rotation.
Now we will achieve the 1st column of stiffness matrix

$$[K_{J} = \begin{pmatrix} K_{J} & K_{12} \\ K_{21} & K_{22} \end{pmatrix}$$

$$K_{H} = Bpply unit-diplacement of 1 and evaluate either
moment or force of 1.
$$M_{H} = \frac{1}{2} = \frac{1}{2}$$$$$$

$$k_{11} := \frac{hEP}{1}, 0 = \frac{h \times 2 \times 3}{3}, (1) = 8$$

$$k_{21} = \frac{2EP}{1}, 0 = \frac{2 \times 2 \times 3}{3}, (1) = 4$$
Step 2: Evaluate on generale the 2nd column of stiffness matrix.
Not: Apply unit rootation along coordinate 2
$$M = \frac{2 \times 1}{1}, 0 = \frac{3 \times 2 \times 3}{2}, (1) = 4$$

$$k_{12} = \frac{3ET}{1}, 0 = \frac{3 \times 2 \times 3}{2}, (1) = 4$$

$$k_{22} = \frac{4ET}{1}, 0 = \frac{4 \times 2 \times 3}{2}, (1) = 8$$

$$[K] = \begin{bmatrix} 8 & 4\\ 4 & 8 \end{bmatrix}$$
Properties of stiffness matrix.
A stiffness matrix is a sequene matrix.
A stiffness is a size of stiffness matrix.
A stiffness is a size of stiffness matrix.
A stiffness is a size of stiffness is a sequene of the top is a sequence of stiffness is a sequence of the top is a sequence of the sequence of stiffness is a sequence of the sequence of stiffness is a sequence of the sequen

Scanned by CamScanner

⇒ Develop or generate stiffners matrix ef the beam
shown in the fig. w.r.t the 4 DOF.
As, DOF = 4
fize of stiffners
$$\frac{12}{12}$$
 $\frac{1}{12}$ $\frac{3}{14}$
fize of stiffners $\frac{12}{12}$ $\frac{1}{12}$ $\frac{3}{14}$
step 1: To get the full column of stiffners matrix.
Pyply unit duplacement along the coordinate 1.
 $k_{12} = \frac{12ET}{12} + \frac{12ET}{12}$ $\frac{1}{14}$ $\frac{1}{14}$ $\frac{1}{14}$ $\frac{1}{14}$
 $k_{14} = \frac{2qET}{12} + \frac{12ET}{12}$ $\frac{1}{14}$ $\frac{1}{14}$

Scanned by CamScanner

To get 1st toturon of stiffned matrix, opply unit dip (toria),
along bordiocite 1.
lift to right moment (-ve)
Right to beff moment (+ve)

$$k_{11} = \frac{12EJ}{1}$$
 $k_{12} = \frac{6EJ}{1^2}$ $k_{13} = \frac{6EJ}{1^2}$
To get and column, apply unit articles along coordinate 2.
 $k_{12} = \frac{6EJ}{1^2}$ $k_{22} = \frac{4EJ}{1}$
 $k_{13} = \frac{6EJ}{1^2}$ $k_{22} = \frac{4EJ}{1}$
 $k_{12} = \frac{6EJ}{1^2}$ $k_{22} = \frac{4EJ}{1}$
 $k_{12} = \frac{6EJ}{1^2}$ $k_{22} = \frac{4EJ}{1}$
 $k_{13} = \frac{6EJ}{1^2}$ $\frac{4EJ}{1}$ $\frac{4EJ}{1}$

To get 3rd colum, apply unit notation along Co-onalizate 3. (T.o. $k_{13} = 6 \in \mathbb{1}$ $K_{23} = \frac{2ET}{1}$ $k_{33} = \frac{4e_1}{l} + \frac{4e_1}{l} = \frac{8e_1}{l}$ $\begin{bmatrix} k \end{bmatrix} = \begin{bmatrix} 246P & 6ef \\ 1^3 & 1^2 & 1^2 \\ \frac{6ef}{1^2} & \frac{8ef}{1^2} & \frac{2eP}{1^2} \\ \frac{6ef}{1^2} & \frac{8ef}{1} & \frac{2eP}{1} \\ \frac{6ef}{1} & 2eF \\ \frac{6ef}{1} & \frac{2eF}{1} & \frac{8ef}{1} \end{bmatrix}$ → Generate the Stiffness matorial of the given portal frame as shown in fig. To get 1st column, apply unit 1 EI=const diplacement along the coordinate 1. 100 of the country optimise What are the steps that involve is analysing the kinematics indetermisate beams. (Stiffners matrix method). Step 1: Evaluate or determine DKIL degree of kinematic indeterminacy) (on degree of freedom. Step 2: Determine joint loads using fixed end moments using subjected external loading particular bearnstep 3: Apply unit duplacement whallong the coordinates by that way prepare stiffness matorix. etep 4: Using the known relationship Evaluate the unknown value, either rotation (on du placement.

Scanned by CamScanner

steps: Apply Unknown values and find out the unknown moment using slope deflection equation. Mab = external load. & = deflection levels / different levels. step6: Evaluate the support reactions to draw shear forsce and Bending moment diagram / wing slope deflection - Analyse the given beam as shown in fig Step 1: Rotation is pokni/m jizokni possible DOF =1 from min 3m 1 3m DR = 0+1+0=1. System of coordinate is 1 The size of the stiffness roating is 1x 1 Step 2' Evaluate the point loads. Jamman Korn /m $M_{ab} = -\frac{\omega L^2}{(2)} = -\frac{20(6)^2}{(2)} = -\frac{60 \text{ kN}}{m}$ $M_{ba} = \frac{Wl^2}{12} = 60 \text{ kN} + m$ $M_{bc} = -\frac{\omega}{2} = -90 \text{ (cn - m)}.$ 120 KN/m $M_{cb} = \frac{\omega f}{e} = 90 \text{ kN} - \text{m}.$ 3m 3m B = Jowst bad @B = 60 - 90 = - 30. Step: 3: Stepq: K= P 4(9)60 [K][S] = {F} - {P} Stiffness displanme node wad matrin factor vector (+ EI) { 06 } = (30 }
Draw shear force diagram by evaluating the support reaction
EMb =0
Anticherman force diagram by evaluating the support reaction
EMb =0
Anticherman force diagram by evaluating the support reaction

$$EMb = 0$$
Anticherman force diagram by evaluating the support reaction
 $E_{1} = 52.5 - 715 + 260$
 $E_{1} = 52.5 - 715 + 260$
 $E_{2} = 56.26 \text{ ED} \text{ [m]}$
 $daw t - ve$
 $-97.5 + Rd(5) + 35 - 120(3) = 0$
 E_{1}^{0}
 E_{1}^{0}
 $E_{2}^{0} = 75$
 $Ra + Rb + Rc = 120(3) = 0$
 $Rb = 120 \text{ ED}$
 $Rb = 120 \text{ ED}$
 $Rc = 97.5 + 360 - 75$
 $Ra + Rb + Rc = 120 + 120$
 $Rb = 120 \text{ ED}$
 $Rb = 120$

$$P_{B} = 150 - 90 = 60 \text{ KN} \cdot 10$$

$$\overline{M}_{ba} \sim \overline{M}_{bc}.$$

$$P_{C} = \overline{M}_{cb} = 90 \text{ tw} \cdot n$$

$$(i) Gvaluale stiffness co-efficient i.e., generation of stiffnessmatrix.
 $\rightarrow To \text{ got the } 1^{St} \text{ courses of stiffness matrix or opply units}$
solation along coordinate 1.

$$K_{U} = \frac{4CT}{4} + \frac{4CT}{6}$$

$$= 10CT}{6} = \frac{5}{5} CT$$

$$k_{21} = 2CT} = \frac{1}{2} CT}$$

$$K_{21} = \frac{2CT}{6} = \frac{1}{2} CT}$$

$$K_{22} = \frac{4CT}{6} = \frac{2}{3} CT}$$

$$K_{22} = \frac{4CT}{6} = \frac{2}{3} CT}$$

$$K_{22} = \frac{4CT}{6} = \frac{2}{3} CT}$$

$$K_{23} = \frac{4CT}{6} = \frac{2}{3} CT}$$

$$K_{24} = \frac{4CT}{6} = \frac{2}{3} CT}$$

$$K_{25} = 0 \text{ for } \frac{1}{2} (1 \text{ for } 10 \text{ for }$$$$

$$\begin{array}{l} \mathcal{C}I \ \Theta_{b} = -10 \Rightarrow \Theta_{b} = -\frac{10}{\text{CP}} \\ \mathcal{C}I \ \Theta_{c} = -(3 \circ =) \ \Theta_{c} = -\frac{130}{\text{CL}} \\ \mathcal{C}I \ \Theta_{c} = -(3 \circ =) \ \Theta_{c} = -\frac{130}{\text{CL}} \\ \mathcal{C}I \ \Theta_{c} = -(3 \circ =) \ \Theta_{c} = -\frac{130}{\text{CL}} \\ \mathcal{C}I \ \Theta_{c} = -\frac{10}{\text{CL}} \\ \mathcal{C}I \ \Theta_{c} = -\frac{10}{\text{CL}} \\ \mathcal{C}I \ \Theta_{c}I \ \Theta$$

$$M_{CB} = \tilde{M}_{Cb} + \frac{2ET}{6} \left[2 \times \frac{-130}{ET} - \frac{16}{ET} \right]$$

= -90 + $\frac{ET}{3} \left(\frac{-260 - 10}{ET} \right)$
= 90 + $\left(\frac{-270}{30} \right)$ = 90 - 90 = 0.

Wi Draw the bending moment diagram FBD: Span AB = $\frac{WI}{4} = \frac{300 \, \text{ky}}{4} = 300 \, \text{kyh}$. Span BC = $\frac{WI^2}{8} = \frac{30 \, (\text{G})^2}{8} = 135 \, \text{bn-m}$

→ Arabyse the given Cartinuous beam using stiffness method
(c) displacement method.
Step 1: In this beam
kinematic todelermissacy is 2.
D, 1, D, 2, 10 & are redendant notation
at A and B respectively
As kinematic redundance is 3,
the Size of stiffness matrix is 3×3-
Step 2: evaluation of joint toads.
Span AB:

$$\overline{M}_{ab} = \frac{-10(5)^2}{12} = -20.83 \text{ km} \text{-m}.$$

Mba = 20.83 tm -ro
Span BC: Mbc = 0
Mcb = 0
be cause no external loads.
Joint loads
 $P_1 = -20.83$; $P_2 = 20.83$ ($\overline{M}_{ba} \ 2$; $\overline{M}_{bc} = 0$)
 $P_3 = 0$
Step 2: Cvaluate Stiffness matrix.
 $\overline{M}_{ab} = \frac{-10(5)^2}{12} = -20.83$ ($\overline{M}_{ba} \ 2$; $\overline{M}_{bc} = 0$)
 $P_3 = 0$
Step 2: Cvaluate Stiffness matrix.
 $\overline{M}_{ab} = \frac{-10(5)^2}{12} = -20.83$ ($\overline{M}_{ba} \ 2$; $\overline{M}_{bc} = 0$)
 $P_3 = 0$
Step 2: Cvaluate Stiffness matrix.
 $\overline{M}_{ab} = \frac{-20.83}{5}$ ($\overline{M}_{ba} \ 2$; $\overline{M}_{bc} = 0$)
 $\overline{M}_{ab} = \frac{-20.83}{5}$ ($\overline{M}_{ba} \ 2$; $\overline{M}_{bc} = 0$)
 $\overline{M}_{ab} = 0$
Step 2: Cvaluate Stiffness matrix.
 $\overline{M}_{ab} = \frac{9 \text{ CF}}{5} = 0.86 \text{ F}$
 $\overline{M}_{ab} = \frac{2 \text{ CF}}{5} = 0.46 \text{ F}$

$$k_{21} = 0$$

$$k_{11} - \frac{4eT}{5} = 0.86T$$

$$k_{11} - \frac{4eT}{5} = 0.4ET$$

$$k_{21} = \frac{2eT}{5} = 0.4ET$$

$$k_{21} = \frac{2eT}{5} = 0.4ET$$

$$k_{21} = \frac{2eT}{5} = 0.4ET$$

$$k_{22} = \frac{2eT}{5} = 0.4ET$$

$$k_{22} = \frac{4eT}{5} = 0.4ET$$

$$k_{22} = \frac{4eT}{5} = 0.4ET$$

$$k_{33} = \frac{4eT}{5} = 0.8ET$$

$$(k_{2}) = \begin{pmatrix} 0.8ET & 0.4ET & 0 \\ 0.4ET & 0.8ET \\ 0 & 0.4ET & 0.8ET \end{pmatrix}$$

$$k_{33} = \frac{4eT}{5} = 0.8ET$$

$$(k_{3}) = 0$$

$$k_{34} = \frac{4eT}{5} = 0.8ET$$

$$(k_{3}) = \frac{1}{5} + \frac{1}{5} = 0.8ET$$

Step 4
A Evaluate the unbrown values i.e., solutions using booms
relationships for equilibrium conditions.
K₁, D₁+K₁₂ D₂+K₁₃D₃ +P₁=0
0.8 ± P.D₁+0.4 ± P.D₂ +0 = 20.83 →0
K₂₁O₁+K₂₂ D₂+K₂₃O₃ +P₂=0
0.4 ± D₁ + 1.6 ± D₂ +0.4 ± D₃ = -20.83 →0
K₃₁D₁+K₃₂D₂+K₃₃D₃+P₃=0.
0 + 0.4 ± 2 byt 0.8 D₃ = 0 → ③.
By Solving 1, 2, and 3.
D₁ = 0₁ = 39.05
D₂ = 0₂ =
$$\frac{-26.03}{\text{eT}}$$

D₃ = $0_3 = \frac{1!3.0!}{\text{eT}}$.
Step 5:
Evaluate the final momentu (on Support momentu).
M_{ab} = $-20.83 + \frac{2ex}{5} \left[\frac{3x}{5} - \frac{26.03}{5} \right] = \frac{-26.03}{5}$
 $= -20.83 + \frac{2x}{5} \left[\frac{-26.03}{5} + \frac{29.05}{5} \right]$
 $= -20.83 + \frac{261}{5} \left[2x - \frac{26.03}{5} + \frac{29.05}{51} \right]$
 $= 15.626. \text{ K}^{N-m}$

> Analyse the continuous beam as shown in the fig using stiffners matoin method. support c'i guided Support. GOKN. , IOOKN $A = \begin{bmatrix} 6m \\ 1 \end{bmatrix} = \begin{bmatrix} 8 \\ 2G \end{bmatrix} = \begin{bmatrix} 1 \\ 2G \end{bmatrix} =$ 1200.

Step 1: The Continuous beam ABC baving fined at end A and rollow support at end B as well as quiding support at C.

The kinematic redendents are rotation at $B(D_i)$ and vertical displacement at $C(D_2)$

Third loads

$$P_{1} = \overline{m}_{ba} - \overline{m}_{bc}$$

$$= 150 - 70 \cdot 31$$

$$= 39 \cdot 69 \text{ kelves}$$

$$P_{2} = \text{total force add og - \frac{1}{b} \left[\overline{m}_{bc} + \overline{m}_{ba} \right],$$

$$= \frac{60 \times 2}{8} - \frac{1}{3} \left\{ (\overline{m}_{bc} + \overline{m}_{ba}) \right\} =$$

$$= 22 \cdot 5 - 9 \cdot 96$$

$$= 12 \cdot 5 \cdot 38 \text{ kelves}$$

$$fep 3: \text{ Evaluate the stiftpoes roatoix}$$

$$Apply up: \text{ orbation along coordinate 1}$$

$$k_{n} = \frac{8cR}{12} + \frac{4cR}{8}$$

$$= \frac{60}{64} \underbrace{cr}_{12} + \frac{4cR}{8}$$

$$= \frac{62}{64} \underbrace{cr}_{12} + \frac{6cR}{64}$$

$$k_{21} = \frac{6cR}{64}$$

$$A_{21} = \frac{6cR}{64}$$

$$k_{22} = \frac{12cR}{64}$$

$$\frac{112}{512} = \frac{12cR}{512}$$

$$\frac{112}{8} = \frac{12cR}{8}$$

$$\frac{112}{8} = \frac{6cR}{64}$$

$$\frac{112}{8} = \frac{6cR}{64}$$

$$\frac{112}{8} = \frac{6cR}{64}$$

Apply the brows relationships

$$k_{11} D_1 + k_{12} D_2 + P_1 = 0$$

 $\lim_{q \in Q} \in \mathbb{T} \cdot D_1 + \frac{6}{64} \in \mathbb{T} + 79.69 \rightarrow 0$
 $k_{21} D_1 + k_{22} D_2 + P_2 = 0$
 $\frac{4}{64} \in \mathbb{T} D_1 + \frac{12}{8^3} \quad \text{erd} D_2 + (2 \cdot S28 \rightarrow \textcircled{O})$
 $D_1 = \Theta_b = -\frac{30.8}{61} \quad \overset{\circ}{\Theta_1} \quad \overset{\circ}{\Theta_2} \quad \overset{\circ}{\Theta_1} \quad \overset{\circ}{\Theta_1} \quad \overset{\circ}{\Theta_1} \quad \overset{\circ}{\Theta_2} \quad \overset{\circ}{\Theta_1} \quad \overset{\circ}{\Theta_1} \quad \overset{\circ}{\Theta_2} \quad \overset{\circ}{\Theta_1} \quad$

Apply the bound of philosophies -> Analyse the nigrid frame as shown in the fig. wing displacement method. 770 KN. Step: 1: 40KN/m 4m. Kinematic redendence. A 12m. 4I Step: 1: The forme cannot sway as the higge at A) prevents the Swing so that the beam has a unknown redendats say of and OB. but Oc =0. (because no chance of sotation as C is fined) Step 2: Evaluate the joint loads using the fined end moment $\overline{m}_{QB} = -\frac{40(12)^2}{12} - \frac{270(8)(4)^2}{(12)^2} = -720 \text{ km} \text{ m}$ SGA $\overline{m}_{bq} = \frac{40(12)^2}{12} + \frac{270(8)^2(u)}{12^2} = 960 \text{ [eN-M]}.$ mbc = mcb = 0. (As there is no load on Bc). P1= -720 KN-m. m. m. 101 C 2 31-0.001 P2 = 960 KN-m Step: 3 - Grenate Grenerate Stiffness matoin (on stiffness matria coefficient -Apply the unit rotation along coordinate 2.

$$k_{ll} = \frac{4}{3} \in I \cdot$$

$$k_{ll} = \frac{4}{3} \in I \cdot$$

$$k_{ll} = \frac{2}{3} \in I$$

$$k_{ll} = \frac{2}{3} = \frac{2}{3} = \frac{2}{3} \in I$$

$$k_{ll} = \frac{2}{3} = \frac{2$$

Evaluate or determine, the final morneds or
Support morneols:

$$M_{ab} = 0$$

 $M_{ab} = 0$
 $M_{ab} = 0$
 $M_{ba} = -960 + \frac{yd(4y)}{y2} \left[\frac{1}{2x} - \frac{660}{62} + \frac{870}{62} \right]$
 $= 660 \text{ t.N-m}$.
 $M_{bc} = 0 + \frac{2CT}{4} \left[-\frac{2x - \frac{660}{62}}{2} \right]$
 $= -\frac{2}{600} \text{ t.N-m}$.
 $M_{bc} = 0 + \frac{2CT}{4} \left[-\frac{660}{62} \right]$
 $= -\frac{330 \text{ t.N-m}}{4m}$
 $D_{Taw} BM diagram$.
 $M_{bc} = \frac{9}{2} \frac{230 \text{ t.N-m}}{2}$
 $R_{b} = \frac{2400 \text{ t.M-m}}{2} \frac{1000 \text{ t.M-m}}{12}$
 $R_{b} = \frac{40 \text{ t.M-m}}{2} + \frac{270 \text{ t.M-m}}{12}$
 $= 240 + 90 = 330$
 $M_{c} = (330 \times 6) - 40 \times 6 \times \frac{6}{2}$
 $M_{c} = (1260)$
 $M_{c} = 1980 - 720$
 $= 1260$
 $M_{c} = 1360$

1360 N mman and land autoria 66 D. 270 40KN/m 4pm A 600 5 330 > Draw the BM dia as shown in the fig. use Stysten stiffners approach. The frame i built in A,B,C and it has a stiff joint at B. It covers a uniformly distributed load of intensity 50 KN/m on BC and each Kinematic redendency Al 200 BD-6. 6m. of uniform C/S. Step 1: for the Structure i 1 and million 300 mension and it i at joint B. 0 119 0a = 0c = 0d =0 (As they are built in fined) step2: Évaluate stiffness motorial coefficient. Apply unit sotation along joint B 9.e., Coordinate 1 $K_{II} = \frac{(AB)}{2}(I) + \frac{4EI}{6} + \frac{4EI}{3}$ 20--1 = 6EI + 2EI + 4EI = 12EI3 3 =4EI. aly

Scanned by CamScanner

Grave joint loads thing fixed and moment.
As there is no load on AB and BD

$$M_{BD} = \frac{m_{BD}}{m_{BD}} = \frac{m_{BD}}{m_{BD}} = \frac{m_{BD}}{m_{BD}} = \frac{m_{BD}}{m_{BD}} = \frac{m_{BD}}{m_{BD}} = 0$$

$$\frac{m_{BD}}{m_{BD}} = 0 + \frac{24E}{2} \left[\frac{23.5}{42} + 0 \right] = 34.5 \text{ EN-m},$$

$$\frac{m_{BD}}{m_{BD}} = 0 + \frac{24E}{2} \left[\frac{23.5}{42} + 0 \right] = 34.5 \text{ EN-m},$$

$$\frac{m_{BD}}{m_{BD}} = 0 + \frac{24E}{2} \left[\frac{23.5}{42} + 0 \right] = 34.5 \text{ EN-m},$$

$$\frac{m_{BD}}{m_{BD}} = 0 + \frac{24E}{2} \left[\frac{23.5}{42} + 0 \right] = 34.5 \text{ EN-m},$$

$$\frac{m_{BD}}{m_{BD}} = 0 + \frac{24E}{2} \left[\frac{23.5}{42} + 0 \right] = 34.5 \text{ EN-m},$$

$$\frac{m_{BD}}{m_{BD}} = 0 + \frac{24E}{2} \left[\frac{23.5}{42} + 0 \right] = 34.5 \text{ EN-m},$$

$$\frac{m_{BD}}{m_{BD}} = 0 + \frac{24E}{2} \left[\frac{23.5}{42} + 0 \right] = 34.5 \text{ EN-m},$$

$$\frac{m_{BD}}{m_{BD}} = 0 + \frac{24E}{2} \left[\frac{23.5}{42} + 0 \right] = -125 \text{ EN-m},$$

$$\frac{m_{BD}}{m_{BD}} = 0 + \frac{24E}{2} \left[\frac{23.5}{42} + 0 \right] = -125 \text{ EN-m},$$

$$\frac{m_{BD}}{m_{BD}} = 0 + \frac{24E}{2} \left[\frac{23.5}{42} + 0 \right] = -125 \text{ EN-m},$$

$$\frac{m_{BD}}{m_{BD}} = 0 + \frac{24E}{2} \left[\frac{2}{4} \times \frac{23.5}{42} + 0 \right] = -125 \text{ EN-m},$$

$$\frac{m_{BD}}{m_{BD}} = 0 + \frac{24E}{2} \left[\frac{3}{4} \times \frac{23.5}{42} + 0 \right] = -125 \text{ EN-m},$$

$$\frac{m_{BD}}{m_{BD}} = 0 + \frac{24E}{2} \left[\frac{3}{4} \times \frac{23.5}{42} + 0 \right] = -125 \text{ EN-m},$$

$$\frac{m_{BD}}{m_{BD}} = 0 + \frac{24E}{2} \left[\frac{3}{4} \times \frac{23.5}{42} + 0 \right] = -125 \text{ EN-m},$$

$$\frac{m_{BD}}{m_{BD}} = 0 + \frac{24E}{2} \left[\frac{3}{4} \times \frac{23.5}{42} + 0 \right] = -125 \text{ EN-m},$$

$$\frac{m_{BD}}{m_{BD}} = 0 + \frac{24E}{2} \left[\frac{3}{4} \times \frac{23.5}{42} + 0 \right] = -125 \text{ EN-m},$$

$$\frac{m_{BD}}{m_{BD}} = 0 + \frac{24E}{2} \left[\frac{3}{4} \times \frac{23.5}{42} + 0 \right] = -125 \text{ EN-m},$$

$$\frac{m_{BD}}{m_{BD}} = 0 + \frac{24E}{2} \left[\frac{3}{4} \times \frac{23.5}{42} + 0 \right] = -125 \text{ EN-m},$$

$$\frac{m_{BD}}{m_{BD}} = 0 + \frac{24E}{2} \left[\frac{3}{4} \times \frac{23.5}{42} + 0 \right] = -125 \text{ EN-m},$$

$$\frac{m_{BD}}{m_{BD}} = 0 + \frac{24E}{2} \left[\frac{3}{4} \times \frac{23.5}{42} + 0 \right] = -125 \text{ EN-m},$$

 $0+\frac{q eI}{3}\left[2\times\frac{37.5}{eI}\right] = 50 \text{ km} \text{ m}!$ mbd Span 37 With (1-BD $= 0 + \frac{q e T}{3} \left(\frac{3 \cdot 5}{\epsilon I} \right) = 25 \text{ kN-m}.$ inthat mi 225 mo 162.5 N-M. 37.5KN-M 162.5 EN. M oiro with 24 locke edy addition 001 hecates e > Compute the end moments for the frame as shown is the fig and draw the BM diagram. NG GAD 2I. しいないいけ 40KNM ちる、長子常 19 01 300 De Fist antotar Min water clarg-the convolution of 13 DAL + PS.

Scanned by CamScanner

Analysiu of Symmetrical frances:

Analyse the symmetrical france by stiffness motion method or using system approach met almo draw BMD. GORN step 1: Evaluate the Brit D Kinematic Indeterminary of the Structure. D 3m D As the articl deformation Our neglected, only rotation This D can occur O_{Θ} and O_{C} are possible ($O_{A} = O_{O} = 0$) because A and D are fined ends. D, and D2 are kipematic redendarity in clockwise direction step3: Evaluate the stiffness matria coefficients Using direct stiffness matrin approach. K1= 2+3.0+++++ = 10 EI 400 $K_{2} = \in I$ Apply unit sotation 201 777 TTI) 26(21) along the Courdinate 2. 4 E(27) 0" K = EI $K_{22} = 2^{\text{ET}} + 2^{\text{ET}} + 3^{\text{ET}}$ = 1049 BT

step 2: Evaluate joint loads.

$$\begin{aligned}
& \widehat{P}_{ab} = \widehat{P}_{ba} = 0; \\
& \widehat{P}_{bc} = -\frac{W!}{8} = -\frac{60x!4}{8} = -30tN m; \\
& \widehat{P}_{cb} = +30tN-n0; \\
& \widehat{P}_{c} = -30tN-n0; \\
& \widehat{P}_{c} = 30tN-n0; \\
& \widehat{P}_{c} = 20tN-n0; \\
& \widehat{$$

1

Scanned by CamScanner

and is the.

$$84ep 2: Craluate joint load.
$$\overline{D}_{Qb} = \overline{D}_{ba} = 0$$

$$\overline{D}_{bc} = -\frac{26}{12} \frac{\omega l^2}{12} = -\frac{20(4)^2}{(2)} = -26.64 \text{ EN-M}$$

$$\overline{D}_{cb} = \frac{\omega l^2}{12} = \frac{20(4)^2}{12} = 26.64 \text{ EN-M}$$

$$\overline{D}_{cb} = \frac{\omega l^2}{12} = \frac{20(4)^2}{12} = 26.64 \text{ EN-M}$$

$$\overline{D}_{cc} = -\omega x lx \frac{1}{2} = -20x l \cdot 5x \frac{1}{2} = -22.5 \text{ EN-M}$$

$$\overline{D}_{cc} = -\omega x lx \frac{1}{2} = -20x l \cdot 5x \frac{1}{2} = -22.5 \text{ EN-M}$$

$$P_1 = -26.64 \text{ EN-P}_2 = 26.67 \text{ EV-M}$$

$$P_2 = 26.67 \text{ EV-M}$$

$$P_1 = -26.64 \text{ EN-P}_2 = 26.67 \text{ EV-M}$$

$$= 4 \cdot 17 \text{ EN-M}$$

$$P_3 = 0.$$

$$84ep 3: Craluate the stiffness matrix (c) efficient twing
To generate the stiffness matrix (c) efficient twing
K_{11} = del + 4el = 10eff.
 $\frac{eff}{3} = \frac{1}{2} =$$$$$

and a second

Apply unit diplacement along coordinates 3 to get god bolums
9] shiftness matrix

$$k_{13} = -0.696E1$$

 $k_{23} = \frac{12eT}{23} + \frac{12eT}{24}$
 $extra to $\frac{2}{3}$ to $\frac{1}{2}$ to $\frac{1}{2}$$

Scanned by CamScanner

Shear Gratuate horizontal reactions at A.

$$= M_{b} = 0 (down)$$

$$3.53 + Ra(3) + 9.92 = 0.$$

$$Ra = -9.92 - 3.53$$

$$Ra = -4.48 EN$$

$$2.53$$

$$Ra = -4.48 EN$$

$$Ra$$

199

joint bads. from fixed end moment.

$$D_{1} = \overline{10} b_{0} \sim \overline{10} b_{2} ...$$

$$= 0 - 40 \text{ KN-m} = -40 \text{ KN-m}$$

$$D_{2} = A0 \text{ KN-m} ...$$

$$D_{3} = -50 \text{ EN} ...$$

$$D_{3} = -1.5 \text{ EL} ...$$

$$K_{33} = \frac{12 \text{ EL}}{4^{2}} + \frac{12 \text{ EL}}{25} = 1.687 \text{ EL} ...$$

$$D_{3} = -1.5 \text{ EL} ...$$

$$K_{33} = \frac{12 \text{ EL}}{4^{2}} + \frac{12 \text{ EL}}{25} = 1.687 \text{ EL} ...$$

$$D_{3} = -1.5 \text{ EL} ...$$

$$C_{43} = -1.5 \text{ EL} ...$$

$$C_{43} = \frac{12 \text{ EL}}{4^{2}} + \frac{12 \text{ EL}}{25} = 1.687 \text{ EL} ...$$

$$C_{43} = \frac{12 \text{ EL}}{4^{2}} + \frac{12 \text{ EL}}{25} = 1.687 \text{ EL} ...$$

$$C_{43} = \frac{12 \text{ EL}}{4^{2}} + \frac{12 \text{ EL}}{25} = 1.687 \text{ EL} ...$$

$$C_{43} = \frac{12 \text{ EL}}{4^{2}} + \frac{12 \text{ EL}}{25} = 1.687 \text{ EL} ...$$

$$C_{43} = \frac{12 \text{ EL}}{4^{2}} + \frac{12 \text{ EL}}{25} = 1.687 \text{ EL} ...$$

$$C_{44} = 0...$$

$$C_{45} = 0....$$

$$C_{45} = 0...$$

$$C_{45} = 0..$$

Evaluate the unknown values wing equilibrium que

$$k_{11}D_{1}+k_{12}D_{2}+k_{13}D_{3}+R=0 \rightarrow 0$$

 $set = b_{1}+et D_{2}+0.3tset D_{3}+e \longrightarrow 0$
 $k_{21}D_{1}+k_{22}D_{2}+k_{23}D_{3}+P_{2}=0 \rightarrow 0$
 $et D_{1}+et D_{2}+1.5et D_{3}= \longrightarrow 0$
 $k_{31}D_{1}+k_{32}D_{2}+k_{33}D_{3}+P_{3}=0 \rightarrow 0$
 $-0.3tset D_{1}-1.5et D_{2}+1.6et ET D_{3}= \longrightarrow 0$
 $3et (-40) + et (40) + 0.3ts(50) +P_{1}=0$
 $P_{1} = +61.25$ ET
 $et (-40) + et (40) - 1.5et (50) +P_{2}=0$
 $P_{2} = -45 et$
 $-0.3tset (-40) - 1.5et (40) + 1.6et et (50) +P_{3}=0$
 $P_{3} = -39.35 et$.
Analysis ef transes using stiffbers matrix/
Diplacement method.
 \Rightarrow what are the steps involved to analyse stiffbress
matrix method:
 $traduate kinematic indeferminency or provide
degrees ef ifreedom where possible.
 $step 1: Evaluate kinematic indeferminency or provide
degrees ef ifreedom where possible.
 $step 2: Evaluat joint leads using unit displacement
along degrees of freedom$$$

$$\begin{split} & \mathcal{J} = \underbrace{P_1}^{P_1} & \stackrel{n^2}{\longrightarrow} & \stackrel{N}{\longrightarrow} & \stackrel{n_1}{\longrightarrow} & \stackrel{n_2}{\longrightarrow} & \stackrel{n_1}{\longrightarrow} & \stackrel{n_1}{\longrightarrow} & \stackrel{n_1}{\longrightarrow} & \stackrel{n_1}{\longrightarrow} & \stackrel{n_2}{\longrightarrow} & \stackrel{n_1}{\longrightarrow} & \stackrel{n_1}{\longrightarrow} & \stackrel{n_1}{\longrightarrow} & \stackrel{n_2}{\longrightarrow} & \stackrel{n_1}{\longrightarrow} & \stackrel{n_2}{\longrightarrow} & \stackrel{n_1}{\longrightarrow} & \stackrel{n_1}{\longrightarrow} & \stackrel{n_2}{\longrightarrow} & \stackrel{n_2}{\longrightarrow} & \stackrel{n_1}{\longrightarrow} & \stackrel{n_2}{\longrightarrow} & \stackrel{n_2}{\longrightarrow} & \stackrel{n_2}{\longrightarrow} & \stackrel{n_2}{\longrightarrow} & \stackrel{n_1}{\longrightarrow} & \stackrel{n_2}{\longrightarrow} & \stackrel{n_$$

step: 3: Evaluate the stiffness matrix wefficients. To get stiffness matrix, Apply unit displacement along D1 and D2 Successively at 'D'. Apply unit displacement along D, (i.e., along coordinate 1) ("if the displacement induces tension in the member then it is positive and if it is Compression then 11 is negative. The displacements are as shown is the fig. TB TUI 10045 T D1 = 655 1.0 (T) (TVE) $D_2 = 1 \cos 45^\circ$ いわけ $=\frac{1}{\sqrt{2}}$ (T) (tre) $b_3 = \cos 90^\circ$ 1. COS. 45 Dy =-1 (E)(-ve) $D_{S} = -1$ (TC) (ave)

Scanned by CamScanner

The Coefficients of matrix is 1st column

$$k_{11} = \frac{AE}{L} \left[+1 + \frac{1}{12} \cos 4s + \frac{1}{\sqrt{2}} \cos 4s^{2} + 1 \right]$$

$$= \frac{AE}{L} \left[1 + \frac{1}{\sqrt{2}} t + \frac{1}{\sqrt{2}} t + \frac{1}{\sqrt{2}} t + 1 \right] = \frac{3AE}{L}$$

$$k_{21} = \frac{AE}{L} \left[\frac{0 + \frac{1}{\sqrt{2}} t + \frac{1}{\sqrt{2}} t + \frac{1}{\sqrt{2}} t + 1}{\sqrt{2} t + \frac{1}{\sqrt{2}} t + \frac{1}{\sqrt{2}}$$

unit displacement vertically along coordinate a Apply KZI (1) doubt 12 (1) TSUD450 >D1 D3=1(7) $D_2 = \frac{1}{\sqrt{2}} (7)$ 1 D120. $D_{4} = \frac{1}{\sqrt{2}} (T)$ $D_{5} = 0$ $k_{12} = \frac{AE}{J} \int 0 + \frac{1}{F} \cos 45^{\circ} + 0 - \frac{1}{\sqrt{2}} \cos 45^{\circ} + 0 \int \frac{1}{\sqrt{2}} \sin 45^{\circ} +$ 20' $k_{22} = \int_{1}^{4E} \left(0 + \frac{1}{V_2} Sig + 5^\circ + 1 + \frac{1}{V_2} Sig + 5^\circ + 0 \right)$ = RAE

$$\begin{bmatrix} k \end{bmatrix} = \frac{AE}{I} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$
Note: In projucted formes, the loads and at jump
(panel joint) and hence P U -ve. So that the
relationship between the stiffness

$$\begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix} \begin{bmatrix} D_1 \\ D_2 \end{bmatrix} = \begin{bmatrix} P_1 \\ P_2 \end{bmatrix}$$

$$\frac{AE}{I} = \frac{AE}{J} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} D_1 \\ D_2 \end{bmatrix} = \begin{bmatrix} 200/k_2 \\ 200/k_2 \end{bmatrix}$$

$$\frac{AE}{J} = \frac{AE}{J} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} D_1 \\ D_2 \end{bmatrix} = \begin{bmatrix} 200/k_2 \\ 200/k_2 \end{bmatrix}$$

$$\frac{AE}{J} = \frac{AE}{J} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} D_1 \\ D_2 \end{bmatrix} = \begin{bmatrix} 200/k_2 \\ 200/k_2 \end{bmatrix}$$

$$\frac{AE}{J} = \frac{AE}{J} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} D_1 \\ D_2 \end{bmatrix} = \begin{bmatrix} 200/k_2 \\ 200/k_2 \end{bmatrix}$$

$$\frac{AE}{J} = \frac{AE}{J} = \frac{200}{K} = \frac{1}{AE} = \frac{47 \cdot 14 - 4}{AE} = \frac{200}{K} = \frac{70 \cdot 71 \cdot 4}{AE} = \frac{70 \cdot 71 \cdot 4}{A$$

$$\frac{16}{14} \operatorname{md} = \operatorname{Ae} \left(\begin{array}{c} 0 & 0 \\ 17 & 17 \\ 0 & 1 \\ 17 & 72 \\ -1 & 0 \end{array} \right)$$
The final forces are calculated using the boad relationship
$$\frac{1}{14} \left(\begin{array}{c} 0 & 0 \\ 1/2 & 1/2 \\ -1 & 0 \end{array} \right) = \left(\begin{array}{c} 1/2 \\ 1/2 \\ -1 & 0 \end{array} \right)$$

$$\frac{1}{14} \left(\begin{array}{c} 1/2 \\ 1/2 \\ -1 & 0 \end{array} \right) = \left(\begin{array}{c} 1/2 \\ 1/2 \\ -1 & 0 \end{array} \right)$$

$$\frac{1}{14} \left(\begin{array}{c} 1/2 \\ 1/2 \\ -1 & 0 \end{array} \right) = \left(\begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \\ -1 & 0 \end{array} \right)$$

$$\frac{1}{14} \left(\begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \\ -1 & 0 \end{array} \right) = \left(\begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \\ -1 & 0 \end{array} \right)$$

$$\frac{1}{14} \left(\begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \\ -1 & 0 \end{array} \right)$$

$$\frac{1}{14} \left(\begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \\ -1 & 0 \end{array} \right)$$

$$\frac{1}{14} \left(\begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{array} \right) = \left(\begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{array} \right)$$

$$\frac{1}{14} \left(\begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{array} \right)$$

$$\frac{1}{14} \left(\begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{array} \right)$$

$$\frac{1}{14} \left(\begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{array} \right)$$

$$\frac{1}{14} \left(\begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \end{array} \right)$$

$$\frac{1}{14} \left(\begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \end{array} \right)$$

$$\frac{1}{14} \left(\begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \end{array} \right)$$

$$\frac{1}{14} \left(\begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \end{array} \right)$$

$$\frac{1}{14} \left(\begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \end{array} \right)$$

$$\frac{1}{14} \left(\begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \end{array} \right)$$

$$\frac{1}{14} \left(\begin{array}{c} 1/2 \\ 1/2 \end{array} \right)$$

$$\frac{1}{14} \left(\begin{array}{c} 1/2 \\ 1/2 \\ 1/2 \end{array} \right)$$

$$\frac{1}{14} \left(\begin{array}{c} 1/2 \end{array} \right)$$

$$\frac{1}{14} \left(\begin{array}{c} 1/2 \end{array}$$

-> - Analyse the pinjointed thuss as shown in fig by stiffness method when arial stiffness of the members like $\left(\frac{AE}{d}\right) = 20 \text{KN/mm}, \left(\frac{AE}{d}\right) = 60 \text{kn/mm}$ and $\left(\frac{AT}{l}\right)_{n} = 30 \text{ kN/mm}$. - 1 60 | 90 30. Д Step 1: Assume the redundancy at 'o' joint loads P1 = 50KN. SOAN $P_2 = 100 \text{ KN}$. 100KN Evaluate memberal forces and stiffners matrix coefficients with uniform displacement along Coordinate 1 as well as 2. Apply unit displacement along coordinate 1. 10460 200 - Al Dr= (AE) (co) to D=1 $D_{T} = \frac{44}{20} \frac{20}{20} \frac{1}{20} = 10$ $D_{1} = 20 \left(\frac{1}{2}\right) + 0 + 30 \left(\frac{\sqrt{3}}{2}\right)$ = 85.98~ 20 CO160 (0 Mort 1

Scanned by CamScanner

$$D_{1} = 2.0 \cdot \left(\frac{1}{2}\right) = 10$$

$$D_{2} = 0$$

$$D_{3} = 30 \frac{\sqrt{3}}{2} = 25.98$$

$$K_{11} = \left(\frac{1}{2} \cdot \frac{1}{2}\right) 20 + 0 + \left(\frac{\sqrt{3}}{2} \times (61 \ 30^{\circ}) 30\right)$$

$$= 5 + \frac{2}{4} \times 30$$

$$= 27.5 \text{ EN} \cdot$$

$$K_{21} = \left(\frac{1}{2} \cdot 5060\right) 20 - \left(\frac{\sqrt{3}}{2} \cdot 56 \ 30^{\circ}\right) 30 \cdot$$

$$= 5 + \frac{2}{4} \times 10^{\circ}$$

$$K_{21} = \left(\frac{1}{2} \cdot 5060\right) 20 - \left(\frac{\sqrt{3}}{2} \cdot 56 \ 30^{\circ}\right) 30 \cdot$$

$$= 5 + \frac{2}{4} \times 10^{\circ}$$

$$K_{21} = \left(\frac{1}{2} \cdot 5060\right) 20 - \left(\frac{\sqrt{3}}{2} \cdot 56 \ 30^{\circ}\right) 30 \cdot$$

$$= 5 + \frac{2}{4} \times 10^{\circ}$$

$$K_{21} = \left(\frac{1}{2} \cdot 5060\right) 20 - \left(\frac{\sqrt{3}}{2} \cdot 56 \ 30^{\circ}\right) 30 \cdot$$

$$= 5 + \frac{2}{4} \times 10^{\circ}$$

$$K_{21} = \left(\frac{\sqrt{3}}{2} \cdot 5060\right) 20 - \left(\frac{\sqrt{3}}{2} \cdot 56 \ 30^{\circ}\right) 30 \cdot$$

$$= 5 + \frac{2}{4} \times 10^{\circ}$$

$$K_{21} = \left(\frac{\sqrt{3}}{2} \cdot 5060\right) 20 - \left(\frac{\sqrt{3}}{2} \cdot 5060\right) 20 - \left(\frac{1}{2} \cdot 5030\right) 30$$

$$= \frac{8 \cdot 66 - 12 \cdot 99}{2 - 4 \cdot 33}$$

$$K_{22} = 20 \left(\frac{\sqrt{3}}{2} \cdot 5060\right) + 1 \left(60\right) + \left(\frac{1}{2} \cdot 5030^{\circ}\right) 30$$

$$= 82 \cdot 5$$

13

$$\begin{pmatrix} 27+5 & -4/33 \\ -4/33 & 82/5 \end{pmatrix} \begin{pmatrix} P_1 \\ P_2 \end{pmatrix} = \begin{pmatrix} 50 \\ 100 \end{pmatrix}$$

$$\begin{pmatrix} P_1 + 22 & 82/5 \end{pmatrix} \begin{pmatrix} P_1 - 4/33 & D_2 = 50 \rightarrow 0 \end{pmatrix}$$

$$-4/33 D_1 + 82/5 D_2 = 100 \rightarrow 0 \end{pmatrix}$$

$$\begin{pmatrix} P_1 = 2.02 \\ P_2 = 1/3 \end{pmatrix}$$

$$\begin{pmatrix} P_1 - 2.02 \\ P_2 = 1/3 \end{pmatrix}$$

$$\begin{pmatrix} P_1 - 2.02 \\ P_2 = 1/3 \end{pmatrix} \begin{pmatrix} 2.02 \\ 1/31 \end{pmatrix} = \begin{pmatrix} P_1 \\ P_2 \\ P_3 \end{pmatrix}$$

$$P_1 = 42.68^{2}$$

$$P_2 = 78.6$$

$$P_3 = -32.82^{2}$$

$$\Rightarrow For the two bars tousies as shown in eqg.$$

$$determine the forces in the members. Take young's modulus e = 70 GPa , C[s area of members = 200 mm^{2} + 100 + 1$$

ħ.

Minial stiffness of the member:

$$Pr\left(\frac{\Delta E}{T}\right) = \frac{\partial e_{0} \times 70 \times 10^{7}}{\partial b (erobec} = \frac{10^{3} \times 10^{7}}{10^{3} \times 10^{6}} = \frac{10^{4} \times 10^{7}}{36 \times 10^{6} \times 10^{2} \times 10^{6}}$$

$$Pr\left(\frac{\Delta E}{T}\right) = \frac{\partial e_{0} \times 70 \times 10^{7}}{10^{3} \times 10^{6}} = \frac{10^{4} \times 10^{6} \times 10^{6}}{10^{3} \times 10^{6}}$$
Hence the fize of stiffness matrix is $\frac{2}{3} \times 10^{10} \times 10^{10$

$$K_{12} = 0 + (0.6 \times 1053.13) 28$$

$$= 13.44$$

$$K_{22} = 0 + (0.6 \times 53.13) 28$$

$$- 10.08$$

$$\left[K\right] = \left(\begin{array}{c} 45.92 \quad 13.49\\ 13.44 \quad 10.08\end{array}\right]$$
Step:4: Calculate the redundant forces using joint equilibrium condition.

$$K_{11} D_{1} + K_{12} D_{2} = P_{1}$$

$$45.92 \times D_{1} + 13.44 D_{2} = 0 \cdot -70$$

$$K_{21} D_{1} + K_{22} D_{2} = P_{2}$$

$$13.44 D_{1} + 10.08 D_{2} = 12.6N. \rightarrow 20$$
By Solving $0 \text{ forces in the members using the trought of the trought$

Scanned by CamScanner

$$\begin{bmatrix} 1 & 0 \\ -0.8 & -0.6 \end{bmatrix} \begin{bmatrix} -0.57 \\ 1.95 \end{bmatrix} - \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}$$

$$F_1 = = \begin{bmatrix} -0.57 \\ -0.7 \end{bmatrix} \cdot KN (C).$$

$$F_2 = -0.714 KN (C)$$

Evaluate the forces is the members OA,OB,OC, OD - Using Stiffiness matrix method. The C/s area of all members are constant and youngs modulus also.

-> Explain the Coordinate System.

at A and free to move at B. If a force acts at B as shown in the fig. above.

Hinge A will move develop a force 'P' towards left of 'A'. i.e., bar AB will stretch by value of & S.

'B' will move towards night by 'PI'

In shortcut the stiffness of the member is arsumed from S. i.e.,

$$k = \frac{P}{S} = \frac{AE}{L} \rightarrow \text{stiffners matrix}$$

$$f = \frac{1}{AE} = \frac{1}{K} = \frac{1}{P} \rightarrow fleatibility.$$

The arrow at B defines the coordinates and it indicates the point and the direction either the

force 'P' or the displacement 'S' based on which, flexibility or stiffness are defined. -> klhat is transformation matrin (on rotation matrix -> different types of coordinate systems O Grobal Coordinate System/ Cartesian Coordinate System. (a) Local coordinate system; may have (1, y) and also > taking only end en alide as enigin. (71.4.2) I (1.14) 3 Natural Coordinate System. 0. - of B -> taking an origin inside the specified line. E-Jhi -> honizontal aris n -> eta -> vertical ani To -> Grita -> for inclined/2 orain. Transformation matrix. let us consider a truss element as shown is fig 9, and 9,2 are the diplacements of the node 2 and noded for end 1 and end 2. X, Y = Global coordinates lim = local coordinates. 2 In the initial courdinate system the displacements are (UIIVI) and (U2, V2)at node 1 &2 resp. $COLO = \lambda_1 | u_1$

 $\chi_{1} = U_{1} \cos \Theta$ $Sin \Theta = \frac{\chi_{2}}{V_{1}}$ $Sin \Theta = \frac{\chi_{2}}{V_{1}}$

22 - VISinoan internet to publication 91-71+72 = 410000+V,8000. bey 192 = U2 COSO + V2 Sino. $\begin{cases} q_{11} \\ q_{22} \\ \end{cases} = \begin{cases} coso & sido & o & 0 \\ 0 & coso & sido \\ 0 & coso & sido \\ \end{cases} \begin{pmatrix} u_{1} \\ v_{1} \\ u_{2} \\ \end{pmatrix}$ The post transformation matrix is used to convert the local co-orderate system into global coordinate system. Nofe: The transformation matrin is also used for duplacements Errespective of Explain the transformation of Courdinates. BVI Global Eleroco Coordinates 1 of Coordinates. 5.9.4.44 -force · diplocement · A mor For 1 and the same structure we can choose the

for 1 and the same structure we can cross the coordinate system most suited to airo solution is problem solving, it is useful to define a coordinate System dealing with the entire structure, coordinates are assigned to locations I.e., expectally at nodes or joints. where, the loads are likely to be act. This kind of coordinates are called system of coordinates or Global Coordinates.

In Global coordinates force and displacement are denoted as if and u. where as in element coordinates they are P and S. this of y are taken because it indicates column matrix. [P]

The two coordinate system differed only Orientation. In present case, the two sets of coordinates appear to be unrelated but all these say relate to the structure.

let us derive a transformation matrix such as {P} = [b] {F} Generate the transformatio matrix b for the

given coordinate system.

L

Val Global Coordinates

ZV =0

Vat Vd =0

Ha

By the observations of the both coordinate system the fize of transformation matrin is 6K2. To get the 1st column of transformation matrix apply unit force along coordinate 1.

The

Element

coordinate system.

when $f_1 = 1$ then $f_2 = 0$.

all all restance intriduced and discussion 281948 Generate a flexibility matrin for the given co-ordinates To calculate or determine the first column of flexibility matrix. Apply unit force along co-ordinate) $f_{11} = \frac{AX}{27}$ $f_{11} = \begin{cases} \frac{1}{2} \times l \times l \\ \frac{1}{2} \times l \\ \frac{1}{$ L EI 1 br b $f_{II} = \frac{J^2}{2CP} \times \frac{2}{3}I$ 2 2] $-\int_{11} = \frac{1^3}{3\epsilon_1}$ $f_2 = \frac{1}{2} \times lx = \frac{1}{\epsilon_1}$ $f_{21} = \frac{1^2}{161}$ Apply unit moment allong coordinate @ $f_{12} = 1 \times \frac{1}{EI} \times \frac{1}{2}$ BZ Ο $f_{12} = \frac{l^2}{2Cl}$ $-l_{22} = \frac{1}{C_1}$ $\begin{bmatrix} f \end{bmatrix} = \frac{1}{CI} \begin{bmatrix} 1^{3}_{1/2} & 1^{7}_{1/2} \\ I^{7}_{1/2} & I \end{bmatrix}$

Evaluate the flexibility matrin for the given Coordinates System. As the given Coordinates are -31 3' the fize of flexibility matrix A Ũ 3K3. > Apply unit force along coordinate O $f_{11} = A\overline{x}$ $= \left\{ \frac{1}{2} \times I \times I \right\} \times \frac{2}{2} \ell.$ $f_{11} = \frac{1^3}{2eT}$ A L $f_{21} = \frac{J^2}{2\pi} \times \left(J + \frac{2}{3} \times J\right)$ $= \frac{l^2}{2R} r\left(\frac{Sl}{3}\right)$ 2EI (1-5) $f_{21} = \frac{51^3}{667}$ $f_{31} = \frac{12}{260} \chi(21 + \frac{2}{3}\chi)$ $= \frac{81^3}{6et} =) \frac{41^3}{3et}$

$$f_{23} = \left(\frac{1}{2} \times 21 \times \frac{21}{21}\right) \left(\frac{9}{3} \times 21\right) + \left(21 \times \frac{1}{21}\right) \times \frac{21}{2}$$

$$= \left(\frac{21^{3}}{22} \times \frac{11}{3}\right) + \frac{21^{3}}{21}$$

$$= \left(\frac{12^{3}}{22} \times \frac{11}{3}\right) + \frac{21^{3}}{21}$$

$$= \frac{11^{3}}{3 \times 21} \times \frac{21}{21}$$

$$= \frac{11^{3}}{3 \times 21}$$

$$f_{23} = \left(\frac{1}{2} \times 31 \times \frac{21}{21}\right) \times \frac{2}{2} \times (31)$$

$$= \frac{91^{3}}{62}$$

$$\left[f_{1}^{2} = \frac{1^{2}}{62} \left[\begin{array}{c} 1/3 & 5/6 & 4/2 \\ 5/6 & 8/3 & 11/2 \\ 1/3 & 11/3 & 9\end{array}\right]$$

$$\Rightarrow \text{Evaluate flexibility mothors for given coordinates are 4 + 1$$

$$+ \text{the given } \frac{1}{61} = \frac{1}{61}$$

$$f_{21} = \frac{1}{61} \left[\begin{array}{c} 0 & \frac{1}{61} \\ 0 & \frac{1}{61} \end{array}\right]$$

- S Generate or develop the flexibility matrix (on -flexibility coefficient for the given coordinate system The given coordinates are 2. so that the by the Size of the flexibility EI= what. matrin is 2x2. the flexibility matrix will be obtained by applying. unit force along each coordinate, one at time and obtaining the displacement. To get 1st column of flexibility matrin apply unit moment along coordinate (). EV=0 品山 Rat Rb =0 Ra = -Rb.EM6 20 -EI Rax1+1=0 load diagram - +x1+1=0. $R_q = -1/1$ Rь= 1/1. To get flexibility matrin coefficient evaluate Conjugate shear along the courdibate. ZV=0 Vat Vb = 1 x 1 x fr $=\frac{l^2}{2EL}$ 制

Scanned by CamScanner

$$\begin{split} \Xi M_{b} &= 0 \\ V_{0x} I - \frac{1}{2eI} \times \frac{2}{3}(I) = 0 \\ V_{0x} I - \frac{1}{2eI} &= 0 \\ V_{0x} I - \frac{1}{3eI} &= 0 \\ V_{0x} &= \frac{1}{3eI} = 0 \\ V_{0x}$$

Evaluation Standard Catalation of general formulae for displacement Calculation W is SSB with centre load. H2 EI B $Q_{a} = \frac{4}{CT}$ $= \frac{1}{EP} \left(\frac{1}{2} \times \frac{1}{2} \times \frac{W}{4} \right)$ 30 $\theta_{b}=\theta_{a}=\frac{WI^{2}}{4}$ B is sss with eccentrical point loading 6 $\Theta_{a} = \frac{w_{ab}}{6 \epsilon \tau l} (l + a)$ 7 B $\Theta_b = \frac{Wob}{6ET}$ (1+b). was £ B A and decide the step stati diy (iii) SSB carrying UDL. Area under UDL is is funit run $\frac{1}{2} = \frac{1}{2} \left[\frac{2}{3} \times 1 \times \frac{1}{8} \frac{1}{8} \right]$ - W13 12 Mark wl2 Phannip to pourb Hold Step-3: Balanzine the first displaced (illiminated is repulsion) (condition of how daily Stand of comole on develop the Alexibility and using indirection temperature temperature private

Scanned by CamScanner

Note: The size of fleraibility matsin always depends on statical indeterminary stepsi use the general equation on notation for formula to calculate redundant forces! $f(x) = \frac{\delta}{P}$ [f][p] = f S = f S = f Swhere So = Original displacements S, = displacements caused due to external loads Step6: Evaluate the Subsidary quantities iren, support reaction. -> Evaluate the given beam or analyse the Continuous beam using force method. Statical indeterminacy A formation B 16KN 5m 0 C of the structure is 1000 1000 1000. Step 1: 2(2+6+1)-2 GP EL-3 /1 EI=11), = 2 Step 2." As the no.of redundants are 2 then size of flexibility matrin & ara Instead of finicity we consider released end moments therefore BG BG BG BG BC The Brown of C induced. Riand R2 are the redundants at supports A and B.

$$R_{1} = M_{AB} = \text{support moments at A}$$

$$R_{2} = M_{B} = \text{support moments at B}$$

$$R_{2} = M_{B} = \text{support moments at B}$$

$$R_{1} = M_{B} = \frac{100}{24(21)} \frac{100}{24(21)} = \frac{16\times10^{2}}{24(30)} = \frac{222\cdot22}{24}$$

$$R_{1} = \theta_{a} = \frac{101}{24(21)} + \frac{1012}{24(30)} = \frac{222\cdot22}{24}$$

$$R_{1} = \frac{10(100)^{2}}{24(22)} + \frac{100(100)^{2}}{16\times24}$$

$$R_{1} = \frac{100}{24} + \frac{1000}{16\times24}$$

$$R_{1} = \frac{100}{2} = \frac{100}{24}$$

$$R_{1} = \frac{100}{2(21)} = \frac{100}{18\times24}$$

$$R_{1} = \frac{100}{6(22)} = \frac{100}{18\times24}$$

$$R_{1} = \frac{100}{6(221)} = \frac{100}{18\times24}$$

$$R_{1} = \frac{100}{6(221)} = \frac{100}{18\times24}$$

$$R_{1} = \frac{100}{2(221)} = \frac{100}{2(221)} = \frac{100}{18\times24}$$

Scanned by CamScanner

$$= \frac{10}{3(361)} + \frac{10}{3(62)}$$

$$= \frac{10}{962} + \frac{10}{361}$$

$$= \frac{40}{961}$$

$$= \frac{40}{961}$$
Skep S: Evolucile the redunction using the throwon relation ships
$$\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} p_2 \\ p_3 \\ p_4 \\ p_5 \\ p_6 \\ p$$

Scanned by CamScanner

Scanned by CamScanner

Analyse the continuous bean using force method. Take
EI as constant
Step 1:
Bualuate or the sen the the month
determine the structure.
SID =
$$S_D = (1+(1+1)-2) = 1$$

the first of flexibility matrix U 1.
Step 2:
A B C C
Provide release T C
Step 3: Evaluate or determine the just displacement
under external backing.
SL = $\frac{Wab}{6(EII)_{ba}}$ (1+a) + $\frac{WIRC}{24+EI}$
= $\frac{30X2X4}{6XEIX+6(C+2)} + \frac{10X4^3}{24XEI}$
= $\frac{30X2X4}{6XEIX+6(C+2)} + \frac{10X4^3}{24XEI}$
= $\frac{30}{CI}$.
Step 4: Evaluate flexibility matrix or flexibility
matrix to efficient
tophy unit force (moment)
 $f_{11} = \frac{J_{ab}}{3eI} + \frac{J_{bC}}{3EI} = \frac{C}{2eI} + \frac{4}{3eI}$

Rc = 14 Ra + Rb + Rc = (30) + (10 K4).Rb = -30 + 30 + 40

RECENTED & CONTROL MA

Syncing of Supports. (Rotalion of any Supports or Equicity of Supports) -> Analyse the continuous beam as shown in the fig. using force method. drow the BM and Shear force dia. abro. during the loading, the Supposts B and c Sync by 10mm & 5mm respectively. Take desurre E = 200 GPa and I= 80×106 mm4 A # 183 B C C Lasin Ann. 40KM . 40KM . 40KM A # 82 183 B C C Lasin Annon A H 2EI AN EI AN EI AN - 220 - 200 20 KN/m. 40KN Storo. 1 10000 Step-1: Evaluate the staticall indeterminacy of the Structure $STD = S_{1} = (2^{+}(1+1)) - \alpha = 3.$ Step2: Arrangement of redundants. A AZ ZPG ZPG ZGR3. OG RI= MA R2=MB R3 = MC Mo~(40x2)+(20x2)*== = 80+40 = 120 kno.m (Anti- cloulewice

Scanned by CamScanner

gep 3: Evaluation of joint displacements (Si)
Note: In this problem, jaint displacements occur
not only due to external boads but also external
moments caused by settlement of supports.
External moments classification.
E = 200 GPD

$$= \frac{200 \times 10^9}{10^3}$$
 KN.
 $T = 80 \times 10^6$ mm⁴
 $= \frac{80 \times 10^6}{10^3} = 80 \times 10^6 m^{4.1}$
 $= \frac{80 \times 10^6}{10^3} \times 80 \times 10^4 = 16000$ KN - m².
EI = $\frac{200 \times 10^9}{10^3} \times 80 \times 10^{16} = 30$ KN - m.
Relative level difference
Ww B and $\ell = 10-5$
 $= 5000$
 $m_{Cb}^2 = \frac{6 EI}{12}$
 $= \frac{6 \times 2 \times 16000}{6^2} \times 50 \times 10^{16}$
 $= 26.67$ KN - m.
 $m_{Cb}^2 = 26.67$ KN - m.

$$m_{cd}^{c} = \frac{G_{R} (6000 \text{ K5} \text{ K}) 6^{-3}}{S^{2}}$$

$$= 19 \cdot 2 \text{ KN} \cdot \text{ro} .$$

$$m_{cd}^{c} = 19 \cdot 2 \text{ KN} \cdot \text{ro} .$$

$$m_{cd}^{c} = 19 \cdot 2 \text{ KN} \cdot \text{ro} .$$

$$m_{cd}^{c} = 120 - 19 \cdot 2$$

$$= (100 \cdot 8 \text{ KN} \cdot \text{ro} .$$
Rotation Control buttons due to external rounsets
$$m_{de}^{c} = 120 - 19 \cdot 2$$

$$= (100 \cdot 8 \text{ KN} \cdot \text{ro} .$$
Rotation Control buttons due to external rounsets
$$m_{de}^{c} = \frac{\text{rol}}{3 \text{ cert}} (\text{for near} - \text{for near} - \text{fo$$

$$(\delta L_{1}) \neq m \text{ mototice contribution of 'joint 1.}$$

$$(\delta L_{1}) \neq m \text{ mototice contribution of 'joint 1.}$$

$$= \frac{W_{1}ab}{G(ET)_{ab}} (1+b) + \frac{W_{2}ab}{G(ET)_{ab}} (1+b) + \frac{W_{b}(1_{b})}{G(ET)_{ab}}$$

$$= \frac{W_{1}ab}{G(ET)_{ab}} (1+b) + \frac{W_{2}ab}{G(ET)_{ab}} (1+b) + \frac{W_{b}(1_{b})}{G(ET)_{ab}}$$

$$= \frac{W_{0}x + \frac{5}{3} \times \frac{W}{3}}{G(ET)_{ab}} (8 + \frac{16}{3}) + \frac{100x + \frac{15}{3} \times \frac{8}{3}}{G(ET)_{ab}} (8 + \frac{8}{3})$$

$$= \frac{W_{0}x + \frac{5}{3} \times \frac{9}{3}}{G(ET)_{ab}} (8 + \frac{16}{3}) + \frac{100x + \frac{15}{3} \times \frac{8}{3}}{G(ET)_{ab}} (8 + \frac{8}{3})$$

$$= \frac{W_{0}x + \frac{5}{3} \times \frac{9}{3}}{G(ET)_{ab}} - \frac{30 \times 8}{G(ET)_{ab}} - \frac{30 \times 8}{G(ET)_{ab}} + \frac{100x + \frac{15}{3} \times \frac{8}{3}}{G(ET)_{ab}} = 0.02.347$$

$$= -0.06272T = 0.02.347$$

$$= -0.06272T = 0.02.347$$

$$= -0.06272T = 0.02.347$$

$$= -\frac{W_{1}^{2}}{M_{1}^{2}} - \frac{w_{bc}^{2}}{h_{c}} + \frac{w_{c}^{2}}{G(ET)_{bc}} + \frac{w_{c}^{2}}{G(ET)_{bc}} + \frac{w_{c}}{G(ET)_{bc}} + \frac{100}{G(ET)_{ab}} + \frac{1$$

Scanned by CamScanner

gleps. Evaluate flexibility matrix Coefficients.
Apply unit force along the loordinate 1.

$$\frac{\sqrt{R_1}}{\sqrt{2CI}} = \frac{\sqrt{R_2}}{2EI} + \frac{\sqrt{R_3}}{CI} + \frac{\sqrt{R_3}}{2m} = \frac{\sqrt{R_3}}{6m} = \frac{\sqrt{R_3}}{5m} = \frac{\sqrt{R_3}}{2m}$$

$$\frac{\sqrt{R_1}}{6m} = \frac{\sqrt{R_3}}{6m} = \frac{\sqrt{R_3}}{5m} = \frac{\sqrt{R_3}}{2m}$$

$$\frac{\sqrt{R_1}}{6m} = \frac{\sqrt{R_3}}{6m} = \frac{\sqrt{R_3}}{5m} = \frac{\sqrt{R_3}}{2m}$$

$$\frac{\sqrt{R_1}}{8m} = \frac{\sqrt{R_3}}{6m} = \frac{\sqrt{R_3}}{5m} = \frac{\sqrt{R_3}}{2m}$$

$$\frac{\sqrt{R_1}}{8m} = \frac{\sqrt{R_3}}{6m} = \frac{\sqrt{R_3}}{5m} = \frac{\sqrt{R_3}}{2m}$$

$$\frac{\sqrt{R_1}}{8m} = \frac{\sqrt{R_3}}{6m} = \frac{\sqrt{R_3}}{6(2EI)} = \frac{\sqrt{R_3}}{12EI}$$

$$\frac{\sqrt{R_1}}{6(2EI)} = \frac{\sqrt{R_1}}{12EI}$$

$$\begin{array}{c} 1129 \ apply \ unit force along coordinate 3 to get the 3rd column of flexibility matrix. \\ fis = 0 \\ 1/2s = \frac{1}{6(E_{DK})} = \frac{6}{6(2E_{DK})} = \frac{1}{2E_{P}}. \\ 1/2s = \frac{1}{6(E_{DK})} = \frac{6}{6(2E_{D})} = \frac{1}{2E_{P}}. \\ 1/2s = \frac{1}{2}\frac{1}{2E_{K}} = \frac{6}{6(2E_{D})} = \frac{1}{2E_{P}}. \\ 1/2s = \frac{1}{2}\frac{1}{2E_{K}} = \frac{6}{6(2E_{D})} = \frac{1}{2E_{P}}. \\ 1/2s = \frac{1}{2}\frac{1}{2E_{K}} = \frac{1}{2}\frac{1}{2E_{P}}. \\ 1/2s = \frac{1}{2}\frac{1}{2E_{K}} = \frac{1}{2}\frac{1}{2E_{P}}. \\ 1/2s = \frac{1}{2}\frac{1}{2E_{K}} = \frac{1}{2}\frac{1}{2E_{R}}. \\ 1/2s = \frac{1}{2}\frac{1}{2E_{K}} = \frac{1}{2}\frac{1}{2E_{R}}. \\ 1/2s = \frac{1}{2}\frac{1}{2}\frac{1}{2E_{R}} = \frac{1}{2}\frac{1}{2}\frac{1}{2E_{R}}. \\ 1/2s = \frac{1}{2}\frac{1}$$

Scanned by CamScanner

$$\begin{aligned} & \text{Step 8: for shear force alignation for the route is the set of the force alignation for the route is the set of the force alignation for the route is the set of the force and the force are replicated as the force are replicated as the replication of the route is the rou$$

Scanned by CamScanner

11.
$$SF @ H (JU) = 43.4976N$$
.
12. $SF @ H (JR) = 43.49-100 = -56.51 KN$.
13. $SF @ D' (JU) = -56.51 KN$
14. $SF @ D(JR) = -56.51 + 136.5 = 79.9 KN$.
15. $SF @ E (JU) = 80 - 20x2 = 40 KN$.
16. $SF @ E(JR) = 40 - 40 = 0$.

SIE A TEL

SUBALL OT SUM BUR

SPE 6 (JO = -98 6FM

SPECTRIAN - SCOTO STR

WYHAT TO THE HAT AT A DO 12.

57 @ @ (374) - (M - 10- 1,5-9.32)

いえてエンドレート 「きょうきょうき」 - 「ので」日 の い

WHERE P

Scanned by CamScanner

.)

G

3

01

Static Condensation:

30/10/18 20010000

UNIT-IN,

Static condensation means bring out zero duplacements or known duplacements at the bottom of the displacements set the vector and unknown doptacements at the top of displacement vectors Now, rearrange the total stiffness lector matrix

(column matrix) according to the above displacement Vector Explanation of static Condensation with suitable en.

let u consider a SSB having degrees of freedom as shown in the fig. As the given @ DOF & 4, the size of stiffners matrix is 4x4

Evaluate the stiffness of matrix along coordinate 1.

 $k_{11} = \frac{12e}{13}$ 6EI 12 = 6EI 12 k313 = -12EI $k_{\text{efl}} = \frac{6 \text{er}}{l^2}$

PART Strater

1374

-H

Scanned by CamScanner

601 12 01 K= 4<u>EI</u> J. GET Δ_2 -6EI 12 12EI 13 6CT 12 Δ_3 6 er 12 201 1 -6EI >0 adjub comada en i da sitte é contouron By knowning the boundary condition of SSB. $\delta_{1}=0$, $\Delta_{3}=0$ so that we arrange is the both the displacements is stiffness matria as per static condensation 4CI 1. Δq 1285 GET J² -12<u>FT</u> 1³ GET J2 Δ_1 hot wilse soft $\frac{-6CI}{l^2}$ 12ET 03 -12EI 3 Inni GEI J2 Δ₂ (δi) Δ4 - 6EI 2er 1 261 1 untrown $\frac{d^{-}}{d^{2}} \begin{pmatrix} k_{12} \\ -6er \\ J^{2} \\ J^{2} \\ J^{2} \end{pmatrix}$ olusplacement P (KII) 4 CET 12 12 13 -12 13 -12 13 GET 12 trown 6CI 12 -12EI Δ, (K 21) -6EI duplacements (52) UCI J3 Δz >0)

As per basies In above expression $\{\overline{P}_{2}\} = \{P_{2}\} \rightarrow (\overline{P}_{1})$ P_{1} $P_{2} \rightarrow (\overline{P}_{1})$ $P_{2} \rightarrow (\overline{P}_{2})$ $P_{1} \rightarrow (\overline{P}_{2})$ $P_{2} \rightarrow (\overline{P}_{2})$ equation 2, the Δ_p , Δ_g , brown displacements In []-> Square matrix and d z → columo, $[k_1][s_1] + [k_1_2][s_2] = \{\overline{P_1}\} \longrightarrow \bigcirc$ $[k_2][\delta_1] + [k_22][\delta_2] = \{\overline{P}_2\} \longrightarrow \bigcirc$ En above expression togots $[k_{12}] \{ \delta_2 \} \notin [k_{22}] \{ \delta_2 \} = 0$ It is known from the above relationships Tie., from support conditions so that the resultant of the stiffness matrix can be obtained by deleting the corresponding rows and columns from the original matrin. $\begin{bmatrix} K_B \end{bmatrix}^{*} = \begin{pmatrix} 4 \in I \\ J & 2 \in I \\ J & 4 \end{pmatrix}$ $\frac{2eI}{J} \quad 4eI$

Scanned by CamScanner
The Vertical reaction P1, P2 can be calculated from the above relationship. $\begin{bmatrix} k_{2l} \end{bmatrix} = \begin{bmatrix} 6 \\ 1^2 \end{bmatrix} \begin{bmatrix} 1^2 \\ 1^2 \end{bmatrix}$ -6ET - 6ET - 12The 2y-the forces are known to be zero at the Some coordinate i.e., the displacements can be taken or placed freely at soller support. $[k_i]\{\delta_i\} + [k_i]\{\delta_i\} = P_i \longrightarrow \textcircled{}$ $[k_2][\delta_i] + [k_{22}][\delta_2] = P_2 = 0 \longrightarrow 5\alpha$ from the above expression. $[k_{21}] [\delta_1] = -[k_{22}] [\delta_2] \longrightarrow C.$ where $\delta_2 = -[\kappa_{22}]^{\prime}[\kappa_{21}] \{\delta_i\}$ Now substitute the Sz value is expression @ $[k_1]_{\{\delta, \}} + [k_12]_{\{-[k_22]} [k_21]_{\{\delta, \}} = \{\bar{P}_1\}$ $\frac{1}{2}\left[\left[\kappa_{11} \right] - \left[\kappa_{12} \right] \left[\kappa_{22} \right] \left[\kappa_{24} \right] \right] = \left\{ \overline{P}, \right\}$) provine porces of K* Kt a called static condensation matrix.

What are the effects is structures due to thermal streng. Theoremal struces:

One of the properties of metal is that they tronger heat. Physical changes that occurs with this transfer include that expansion when temperature increases and shrubbage when temperature decreases. This happed is all 3-dimension. Thermal stresses occurs as a result of thermal expension of metallic structural members with the temperature changes in temperature cawe thermal deformation to the structural members. The Value of this deformation can be described using the following formula

Sf = XXLX (T-TO)

13] [a]] . At.

Where, $\delta_t = the deformation of the structural member due to$ change + in temperature $<math>\kappa = temperature Coefficient of expansion, a material$ measured in units [ok.<math>L = croiginal length of the structural member. T = Cinal temperature measured in unit. (k or °C). To = Inital temperature or original temperature (Lor °C).

when a structural member " free to move and expand, there is no stress extend on i-1. However, when movement and expansion are restricted, then thermal stress occurs when motion is restricted in the direction of expansion, the value of reaction force is equal to the value of the free necessary to compress a beam in the opposite direction, and by the same amount of deformation we can use the following formula, to descarbe the relation ship. F= SEA Here, S = alegormation of the bears due to reaction force which is equal to the deflection of bears duc to thermal expansion but in the oppolirection F THE TEL A = Cfs arrea of beam. E = youngs modulus of the material (n/m2) L=length of the beam. Putting together our understanding, of thermal expansions and the forces involve, we can now solve for theoremal strender, represented by following relation ship $\delta_{\pm} = \delta_{\pm}$ $\propto \gamma(T-T_0) = \frac{F_1}{F_1}$ = J.L - x.

SHEAR WALLS: What is a shear wall and their advantages.

UNIT-VILLAS DESCRIPTION

Shear wall is a reinforced Concrete wall often have vertical plate like RC walls called as shear walls in addition to slabs, bears and Columns. These walls generally start at foundation level and are continuous throughout the building height i their thickness can be the isonon-400mm thick according to the height of the building.

shear walls are provided along the length and width of the building. Shear walls are like vertical oriented wide bears that carry earthquake load downwards to foundations flab is considered as wider beam, b = 100 cmm) Advantages:

1. These walls have better resistance to earthqualee loads. 2. They provide high resistance against lateral woods caused by wood.

3. They provide good architectural appearance.

Explais different types of shear walls. 1. Overall geometry walls: (Idvinension of the cls is much longer than other). Shear walls are oblinc. is cross-section i.e., one dimension of the Cross-section is much longer than the other.

-> Crectangular cross-section is common). ->.L, V. shaped cross-section are commonly used.

2 Thiowalled Hallow Rc shafts: TIME silutes These are around the elevators 1.e., lifts, cores Of buildings also, These walls also act as shear wally and charled be resultant to the easthquake loads. what is monolithic shear walls: and Explain the Monolithic shear walls are classified as 1. Shaf short shear wall and bee bust with a 2j h <1 then of the hard the pallow has dipad add parts balling and Elson and 319. Squats shear wall are like south of the Kith indebouwhen the is between [12] your half though Company and , should relieve an incluster the finit I < B StatoovbA 3. Cantilever Shear wall. when b >3 it i called the still of the Cantilever. 2-12×3tuide good topositification opprendates . Figeneralise the Shear wall shapes: Generally the shear walls are either plaine or flanged by corre walls consist of the channel aot is coulos2-22020 soft for contraction Sec. trons SOR Constangular (15) secture à (Constant D D Col je derte bygode vid s-C-Shoped. T-shope rectangular L-shape

Scanned by CamScanner

plus Explain the behaviour of shear walls: 1. Behavior of shear walls with particular reference to their mode of failure as is the case of beams. influenced by their properties as well as support Conditions

2. He tow Sheer walls are thrown as Squat walls. There are Gerra characterized relatively small beight to length ratio (1/d ratio), maioly expected to fail to Shear just like deep beams. 3. Shear walls occuriment in high-rise buildings are other thank generally behave as vertically Cantileves beams with their strength controlled by flexure rather than shear. Such walls are Subjected to beading moments, Shear originatiog. Subjected to beading moments, Shear originatiog. Subjected to beading moments, Shear originatiog. from lateral bods. and axial compression caused by gravity.

(bood) (Fg/m). Fg/m). K-1w-+T

(1 KNOX hw) 2 hw whw

Behaviour of castilever shear walls? Shear walls are critical for walls with relatively low height and length ratios, tall Shear walls controlled maisly by flexural requirements - as shown is fig below. The fig shows a typical shear wall of height hus, length lus and thickness two. wm blenotion hw (0)m) plan tw A postion of shear wall which interact with frames may behave as low shear wall depending upon the postions of the walls and location of the point of contrafference along the height of walls. The later is depending principly on the relative stiffness of the frame and shear wall elements in structure a we for Card Kup ()

Scanned by CamScanner

Explain the methods of analysis of a structure with shear walls 1. Perforated shear wall method. 2. Segmented Shear wall method. 3. Shear through panel rotation tet sest 4. Ni-kara cabeylis method. 5. Alternate retational Analysi. 1. Perforated shear wall method: (applicable when F≤1 only). This method relater shear capacity of a wall voits perforations (openings) (ex. doors, windows. a both) to a wall of identical configuration without Perforations through an empirical reduction factor (F). This value is determined as follows. $F = \frac{3}{3 - 28} \longrightarrow 0$ This is called reduction, factors where $r = \frac{3}{3 - 28} \longrightarrow 0$ where, $r = \frac{1}{1 + \frac{A_0}{H \leq l_i}} \rightarrow \textcircled{2}$ where, Ao = total area of openings H = beight of wall. li = Summation of length of all full 58.80 09.52 height wall segment r = Shear area ratio. In this method, the designer shall multiply the shear wall resultance calculated based on the total wall length (including the d. length of perforations) by the reduction factors Scanned by CamScanner

If F≤1, determine the F value with the belo of equation 1 $\int F = \frac{\pi}{3-2\pi}$ The total shear resistance of a shear wall is determined as follows. $V = .FLV \rightarrow 3$ where v=total lateral resultance of a performed Shear wall live F = reductión parameter according to equi L = total length of shear wall line is cluding length of perforations. N = unit Shear resultance determined from appendix B. J. The method requires that the overtuning restrain are installed at the wall ends that typically Coinside with building corners. (the man wall unit Shear capacity I.e., unfractured not exceeding 120016 2. Segmented chear wall method: The method was resistance of fully sheather Segments located between wall openings. each Segment should be fully restrained against over-turning. The contribution of the components above and below openings are ignored. The unit shear resistance is multiplied by the Perforaturies by the reduction factors

Scanned by CamScanner

segment length to determine shear resultance of the Segment. The total shear resultance of Shear wall line i determined as a sum of revistance of all individual Segments as follows. $V = \overset{{\scriptstyle }}{\overset{\scriptstyle i=1}{\overset{\scriptstyle }}} li V i \longrightarrow \mathbb{O}.$ where, V = total lateral resultance of shear wall live li = length of an individual shear wall individual Segment Vi= unit shear resutance of an shear wall regement determined from appendix B n= no. of shear wall segments is shear wall lise. If FSI then perforated shear wall method is used. There is no chance of F>1, if such happens segmented shears wall method i adopted 16/11/18 3. Shear through panel rotation: This method is used to determine the shear resultance of a fully restrained lighter frame non-perforated shear wall segment through modelling the notation response of individual sheating panels that are fastened to the wall framing with nails (on screws. This method is formulated with an assumption that a sheating panel notates around its center.

as rigid a body. The configuration of an individual

I not to the total shear resultance is determined based on the distance foor the nail to the center of panel rotation and relative nail displacement. The noit shear wall of an individual shear panel is determined as follows. VILZ n(total) VIO ENCNIEL KI where, $K_i = Sin \beta \sqrt{\frac{24}{B} \cos\beta}^2 + \frac{y_i}{H} \sin\beta$ lashivit. Cri = Pear resultance of isolividual sheating. BR = width of sheating panel. proceeding the end of sheating panel. B= angle b/w the diagonal and Vertical # dout i de edge of individual sheating perne i= sheating fastener enumerator. Nr = honizontal courdinate of ith fastener relative to the panel center. yi = Vertical coordinate of its fastener relative to the panel Centre. Ki = geometric characteristic of fastering, schedule of a sheating panel. The poince ; they rate at touched, and talt - I with Dally 100 pail on a sin it is helder a brackson with that is isomer part what and it calles existing a body. The configuration of a give indian

4. Nr- karacabeylis' method:

These mechanics based method & formulated such that the resistance of a non-perforated shear wall segment with a partial over-turning restraint is expressed as a fraction of the resultance of an identical shear wall segment with full restraint. This shear capacity ratio for a wall with a fartial over-turning restraint and the full overturning restraint can be aletermined as follows

 $\alpha = \sqrt{1+2}\varphi Y + \gamma^2 - Y \longrightarrow (1)$ $\varphi = \frac{R}{2} \longrightarrow \textcircled{} \left[0 < \varphi \leq 1 \right]$

(small phi) mCN where, or = ratio of lateral load capacity of a wall segment with postial uplift restraint to the capacity of wall segment with full

uplift restraiot. R = uplift restraiot force on the end stud of shear wall that include contribution of partial overturning restraint, grawity load, corner effect and other system effect: (b) (breadth) r = wall segment aspect ratio : (b) (breadth) r = uplift restraint effect which i equal tounity for the walls. fully restraint against ' overturning.

M = total no.of noils along the end stud of shear wall segment. CN = capacity of single nail connection that can be

= Capacity of single number or estimated wring measured experimentally or estimated wring the connection yield theory.

Scanned by CamScanner

The total resistance of shear wall live is determined as sum of the resultances of all voolividual segments as follows all all a loss of a matrix and have n(total) sequent with a radio $= \Sigma$ $\propto 1 i v_i$ d obtails + 10 where, N = total lateral resistance of shear wall line $\alpha = It$ is described is eq. \mathbb{O} . li = length of an individual shear wall segment Ni = unit shear resultance of an individual Shear wall segment determined from appendix B n=no.of shear wall segments in a shear wall line 5. Alternate rational analysis: This section is not intended to limit the we of alternate design methods that use recognized principles of mechanics and engineering. Enamples of such methods include finite dement analysis, matrin analysis, energy based formulations, Solutions is another way. upply a doutou tuppe landing tuppe time a tonstan plut - no a inter OWARDSTLAND but 2 bas of paulo alion jo on lotal timorpool llog model je = capeely of single neut connections that can be 15 -1 experimentally or estimation (1) w DUNG bisity calborno sti

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Department of Civil Engineering

MATRIX METHODS OF STRUCTURAL ANALYSIS (GR22D5001)

COURSE FILE CHECK LIST

S.No.	Name of the Format	Page
1.	Syllabus	
2.	Time Table	
3.	Program educational Objectives	
4.	Program objectives	
5.	Course Objectives	
6.	Course Outcomes	
7.	Students Roll List	
8.	Guide lines to study the course books & references, course design & delivery	
9.	Course schedule	
10.	Unit plan/Course Plan	
11.	Evaluation Strategy	
12.	Assessment in relation to COB's and Co's	
13.	Tutorial Sheets	
14.	Assignment Sheets	
15.	Rubric for Course	
16.	Mappings of CO's and Po's	
17.	Model question papers	
18.	Mid-I and Mid-II question papers	
19.	Mid –I marks	
20.	Mid –II marks	
21.	Sample answer scripts and Assignments	
22.	Course materials like notes, PPT's, Videos etc.,	

COURSE COMPLETION STATUS

-Academic Year : 2022-23

Semester : I

Name of the Program: M.Tech (Structural Engineering) Year: I

Course/Subject: Matrix Methods in Structural Analysis

Course Code: GR22D5001

Name of the Faculty: Dr. <u>GVV Satyanarayana</u> Dept.: <u>Civil Engineering</u>

Designation: PROFESSOR

Actual Date of Completion & Remarks, if any

Units	Remarks	No. of Objectives Achieved	No. of Outcomes Achieved
Unit 1	Introduction to Matrix methods of Analysis	1	1
Unit 2	Assembly of stiffness matrices	2	2
Unit 3	Introduction about Flexibility matrix method(Force Method) And application to indeterminate beams	3	3
Unit 4	Introduction about Special analysis procedures	4	4
Unit 5	Special analysis procedures	5	5

Signature of HOD

Signature of faculty

Date:

Note: After the completion of each unit mention the number of Objectives & Outcomes Achieved.

Date:

LESSON PLAN

Academic Year	: 2022-23	Date: 26-10-2022		
Semester	: I Unit – I Introduct	tion to Matrix methods of Analysis		
Name of the Program: M.Tech (S	Structural Engineering)	Year: I		
Course/Subject: Matrix Method	ls in Structural Analysis	Course Code: GR22D5001		
Name of the Faculty: Dr.GVV S	atyanarayana.	Dept.: Civil Engineering		
Designation: PROFESSOR				
Lesson No: 1		Duration of Lesson: <u>1hr</u>		
Lesson Title: Introduction about	Matrix methods of analysis			
INSTRUCTIONAL/LESSON OBJECTIVES:				
On completion of this lesson the student shall be able to:				
1. Definition of structure and its importance.				
2. Analyze the different parameters induced in the structure during loading.				
3. Analyze different structures w	ith different end conditions.			
TEACHING AIDS : white TEACHING POINTS :	board, Different colour mar	kers		

- Definition of a structure
- Differentiate between link and mechanism
- Different types of structures

Assignment / Questions: (1 & 1) 1. What is a structure? (1 & 1) 2. Explain link and hinge where they are used.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 27-10-2022
Semester	: I Unit – I Introductio	on to Matrix methods of Analysis
Name of the Program: 1	M.Tech (Structural Engineering) Yea	r: I
Course/Subject: Matrix	Methods in Structural Analysis	Course Code: GR22D5001
Name of the Faculty: D	r.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFESS	OR	
Lesson No: 2		Duration of Lesson: <u>1hr</u>
Lesson Title: Determina	tion of Static indeterminacy of structur	res
INSTRUCTIONAL/LES	SSON OBJECTIVES:	
On completion of this le	esson the student shall be able to:	
1. Definition of static in	ndeterminacy.	
2. Basic formulas for va	arious structures come under static inde	terminate.
3. Tips in determination	of static indeterminacy.	
TEACHING AIDS TEACHING POINTS	: white board, Different color marker	'S
• Definition of	f static indeterminacy.	
• Differentiate	between link and hinge in a structure.	
• Formula for structures.	static indeterminacy for external and ir	nternal indeterminacy of various

Assignment / Questions: (1 & 1) 1. What is redundant?

(1 & 1) 2. Explain in determination of static indeterminacy of a structure.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 31-10-2022
Semester	: I Unit – I Introducti	ion to Matrix methods of Analysis
Name of the Program: M.Tech(S	Structural Engineering)	Year: I
Course/Subject:Matrix Method	ls in Structural Analysis	Course Code: GR22D5001
Name of the Faculty: Dr.GVV S	satyanarayana.	Dept.: Civil Engineering
Designation: PROFESSOR		
Lesson No: 3		Duration of Lesson: <u>1hr</u>
Lesson Title: Determination of I	Kinematic indeterminacy o	f structures
INSTRUCTIONAL/LESSON C	DBJECTIVES:	
On completion of this lesson the	student shall be able to:	
1. Determination of Kinemati	ic indeterminacy of structur	res.
2. Degrees of freedom at var	ious supports.	
3. Difference between DOF'	s and redundants.	
TEACHING AIDS : white TEACHING POINTS :	board, Different colour ma	arkers
Definition of kinemat	ic indeterminacy.	
Differentiate between	n static and kinematic indet	erminacy.

• Evaluation of kinematic indeterminacy with different methods.

Assignment / Questions: (1 & 1) 1. Explain the procedure in evaluation of kinematic indeterminacy? (1 & 1) 2. Explain the difference between static and kinematic indeterminate structures.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 01-11-2022
Semester	: II Unit – I Introduction	to Matrix methods of Analysis
Name of the Program: M.Tech(St	ructural Engineering) Year: I	
Course/Subject: Matrix Method	s in Structural Analysis	Course Code: GR22D5001
Name of the Faculty:.Dr.GVV Sa	atyanarayana.	Dept.: Civil Engineering
Designation: PROFESSOR		
Lesson No: 4		Duration of Lesson: <u>1hr</u>
Lesson Title: Determination of D	OF of given structures	
INSTRUCTIONAL/LESSON O	BJECTIVES:	
On completion of this lesson the	student shall be able to:	

1. Determine the DOF at different supports.

2. Analyze different structures with different end conditions

TEACHING AIDS	: white board, Different colour markers
TEACHING POINTS	:

- Definition of a cantilever method in determination of KID.
- Differentiate between vertical and horizontal shear release at supports.

Assignment / Questions: (1 & 1) 1. What is angular and linear translation at pin and rigid joints? (1 & 1) 2. Explain the cantilever method or tree method to evaluate the KID of structure..

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 02-11-2022		
Semester	: I Unit – I Introdu	ction to Matrix methods of Analysis		
Name of the Program: M.Tech (Structural Engineering)	Year: I		
Course/Subject:Matrix Method	s in Structural Analysis C	Course Code: GR22D5001		
Name of the Faculty: Dr.GVV S	atyanarayana.	Dept.: Civil Engineering		
Designation: PROFESSOR				
Lesson No: 5		Duration of Lesson: <u>1hr</u>		
Lesson Title: Co-Ordinate sysytems				
INSTRUCTIONAL/LESSON OBJECTIVES:				
On completion of this lesson the student shall be able to:				
1. Wha are the different co-ordinate systems?				
2. How to change the local co-ordinates into global co-ordinate system.				
3. Importance of transformation matrix.				
TEACHING AIDS : white TEACHING POINTS :	board, Different colour mark	ters		
Definition of transform	nation matrix.			

• How to change local co-ordinates in to global co-ordinates?

Assignment / Questions: (1 & 1) 1. What is use of transformation matrix?

(1 & 2) 2. Explain the differences between local and global co-ordinate system.

Signature of faculty

•

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2022-23			Date: 03	-11-2022
Semester	: I UI	nit — I Intro	duction	to Matrix methods	of Analysis
Name of the Program: M.Tech (Structural Engir	neering)		Year: I	
Course/Subject:Matrix Method	s in Structural	Analysis	Course	Code: GR22D5001	
Name of the Faculty: Dr.GVV S	atyanarayana.			Dept.: Civil Engineer	ring
Designation: PROFESSOR					
Lesson No: 6				Duration of Lesson:	<u>1hr</u>
Lesson Title: Structure idealize					
INSTRUCTIONAL/LESSON OBJECTIVES:					
On completion of this lesson the student shall be able to:					
1. How to idealize the structure under different co-ordinate systems?					
2. What is structure idealization?					
3. State the importance of structural idealization					
TEACHING AIDS : white TEACHING POINTS :	board, Differen	nt colour ma	arkers		
• Delinition of transfor	mation matrix.				

• How to change local co-ordinates in to global co-ordinates?

Assignment / Questions: (1 & 1) 1. What is use of structural idealization? (1 & 2) 2. Explain the importance of structural idealization.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 08-11-2022
Semester	: I Unit – I Introduc	tion to Matrix methods of Analysis
Name of the Program: M.Tecl	n (Structural Engineering)	Year: I
Course/Subject:Matrix Meth	ods in Structural Analysis	Course Code: GR22D5001
Name of the Faculty:Dr.GVV	Satyanarayana.	Dept.: Civil Engineering
Designation: PROFESSOR		
Lesson No: 7		Duration of Lesson: <u>1hr</u>
Lesson Title: Differentiate &	relation between Stiffness & I	Flexibility Matrix methods
INSTRUCTIONAL/LESSON	OBJECTIVES:	
On completion of this lesson t	he student shall be able to:	
 Understand about the st Suitability of structure is 	ructure idealization. Idealization in Structural Anal	ysis.
TEACHING AIDS : wh	ite board, Different colour ma	urkers
• Explain the proced	ure of structure idealization.	

Assignment / Questions: (1 & 1) 1. Explain about the structure idealization.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 08-11-2022	
Semester	: I Unit – I Introduc	ction to Matrix methods of Analysis	
Name of the Program: M.Tech	(Structural Engineering)	Year: II	
Course/Subject:Matrix Method	ds in Structural Analysis	Course Code: GR22D5001	
Name of the Faculty:Dr.GVV S	batyanarayana.	Dept.: Civil Engineering	
Designation: PROFESSOR			
Lesson No: 8		Duration of Lesson: <u>1hr</u>	
Lesson Title: Differentiate and relation between Flexibility & stiffness matrix methods			
INSTRUCTIONAL/LESSON OBJECTIVES:			
On completion of this lesson the student shall be able to:			
1. Derive the general relationship between Flexibility & stiffness matrix methods			
2. Explain the differences betwee	en Flexibility & stiffness m	natrix methods	
TEACHING AIDS : white TEACHING POINTS :	board, Different colour ma	rkers	

- How to evaluate the general relationship between Flexibility & stiffness matrix methods
- Explain the differences between Flexibility & stiffness matrix methods

Assignment / Questions: (1 & 1) 1. Derive the relationship between Flexibility & stiffness matrix Methods. (1 & 1) 2. List out the differences between Flexibility & stiffness matrix Methods.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 09-11-2022		
Semester	: I Unit – I Introduction	n to Matrix methods of Analysis		
Name of the Program: M.Tech (Structural Engineering)	Year: I		
Course/Subject: Matrix Method	ds in Structural Analysis	Course Code: GR22D5001		
Name of the Faculty: Dr.GVV S	atyanarayana.	Dept.: Civil Engineering		
Designation: PROFESSOR				
Lesson No: 9		Duration of Lesson: <u>1hr</u>		
Lesson Title: Derive displacement	nt equations for truss, beam and t	orsional element.		

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Calculation of displacement equations for truss, beam and torsional elements.

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

• Evaluate the displacement equations for truss, beam and orsional element.

Assignment / Questions: (1 & 1) 1. How to calculate the displacement equations for truss, beam and torsional elements?

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 10-11-2022
Semester	: I U	Unit- I Introduction to Matrix methods of Analysis
Name of the Program: M	A.Tech (Structural Engineeri	ng) Year: I
Course/Subject: Matrix Methods in Structural Analysis		sis Course Code: GR22D5001
Name of the Faculty: Dr.GVV Satyanarayana.		Dept.: Civil Engineering
Designation: PROFESS	OR	
Lesson No: 10		Duration of Lesson: <u>1hr</u>
Lesson Title: Discuss on	n local and Global co-ordinat	tes

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand about the local and Global co-ordinates
- 1. Differences between local and natural co-ordinate systems.
- 2. Explain the procedure in calculation of global stiffness matrx and displacement vectors

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

• Explain about local stiffness matrices and Global and displacement and load vectors

Assignment / Questions: (1 & 1) 1. How to generate local and global stiffness, displacement and load vectors?

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 14-11-2022
Semester	: I	Unit- I Introduction to Matrix methods of Analysis
Name of the Prog	gram: M.Tech (Structural Eng	gineering) Year: I
Course/Subject:	Matrix Methods in Structural	Analysis Course Code: GR22D5001
Name of the Face	ulty: Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PI	OFESSOR	
Lesson No: 1	1	Duration of Lesson: <u>1hr</u>
Lesson Title: Dis	cuss on questions in unit-1 fro	om old question papers.
INSTRUCTION	AL/LESSON OBJECTIVES:	
On completion o	f this lesson the student shall	be able to:
 Understand th Evaluate the g 	e basic concepts of MMSA lobal stiffness matrix from inc	dividual stiffness matrices.
TEACHING AII TEACHING PO	DS : white board, Differe INTS :	ent colour markers

• Assembling of global stiffness matrix from individual stiffness matrices.

• Evaluate the size of global stiffness matix.

Assignment / Questions: (1 & 1) 1. Evaluate the global stiffness matrices from individual stiffness matrices

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 15-11-2022
Semester	: I Unit- I I	ntroduction to Matrix methods of Analysis
Name of the Program: M.Tech (Structural Engineering)	Year: I
Course/Subject: Matrix Methods	in Structural Analysis	Course Code: GR22D5001
Name of the Faculty: Dr.GVV S	atyanarayana.	Dept.: Civil Engineering
Designation: PROFESSOR		
Lesson No: 12		Duration of Lesson: <u>1hr</u>
Lesson Title: Discuss on question	ns in unit-1 from old que	stion papers .

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Determination of static and kinematic in determinacy of given structures.
- 2. How to calculate dofs of any structure?

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

- Evaluate the static and kinematic in determinacy of given structures.
- Evaluate the dofs of any structure?

Assignment / Questions: (1 & 1) 1. Evaluate the static and kinematic in determinacy of given structures and dofs of any structure?

Signature of faculty

Year: I

Course Code: GR22D5001

Dept.: Civil Engineering

Duration of Lesson: 1hr

LESSON PLAN

Academic Year	: 2022-23	Date: 16-11-2022
Semester	: I	Unit- II Assembly of stiffness matrices

Name of the Program: M.Tech (Structural Engineering)

Course/Subject: Matrix Methods in Structural Analysis

Name of the Faculty: Dr.GVV Satyanarayana.

Designation: PROFESSOR

Lesson No: 13

Lesson Title: Explain assembly of stiffness matrices.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand the procedure in determination local and global stiffness matrices.
- 2. Understand the properties of stiffness matrix.

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

- What is local and global stiffness matrices in case rotation and how to assembly the local matrices in to global matrix.
- Properties and its role in stiffness matrices in structural analysis.

Assignment / Questions: (2 & 2) 1. Discuss the how to assembly the local stiffness matrices into global stiffness matrix. (2 & 2) 2. List out the properties stiffness matrix.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 17-11-2022
Semester	: I	Unit- II Assembly of stiffness matrices
Name of the Program: M.Tech (S	Structural Engineering)	Year: I
Course/Subject: Matrix Methods	in Structural Analysis	Course Code: GR22D5001
Name of the Faculty: Dr.GVV S	atyanarayana.	Dept.: Civil Engineering
Designation: PROFESSOR		
Lesson No: 14		Duration of Lesson: <u>1hr</u>
Lesson Title: General procedure	for assembly stiffness matr	ices
INSTRUCTIONAL/LESSON O	BJECTIVES:	
On completion of this lesson the	student shall be able to:	
1. Understand the procedure	e in assembling of stiffness	matrices.
2. Understand the importanc	e of assembling of stiffness	matrices.
TEACHING AIDS : white	board, Different colour ma	rkers

TEACHING POINTS :

• The steps involved in assembling of stiffness matrices.

Assignment / Questions: (2 & 2) 1. Derive the global stiffness matrix using assembling of element stiffness matrices.

Signature of faculty

LESSON PLAN

Academic	Year	: 2022-23	Date: 21-11-2022
Semester		: I	Unit- II Assembly of stiffness matrices
Name of th	e Program: M.Tech (S	tructural Engineering)	Year: I
Course/Sub	ject: Matrix Methods	in Structural Analysis	Course Code: GR22D5001
Name of th	e Faculty: Dr.GVV Sa	tyanarayana.	Dept.: Civil Engineering
Designation	: PROFESSOR		
Lesson No	o: 15		Duration of Lesson: <u>1hr</u>
Lesson Title	e: Displacement vector	rs	
INSTRUC	FIONAL/LESSON OF	BJECTIVES:	
On complet	tion of this lesson the	student shall be able to:	
1. Unde	erstand the procedure in	n assessment of displacem	ents at different nodes.
2. How	to calculate the unknow	wns (displacements) using	known relationship?
TEACHIN TEACHIN	G AIDS : white I G POINTS :	board, Different colour ma	rkers
•	The steps involved in a	assessment of displacement	ts at different nodes using known

• The steps involved in assessment of displacements at different nodes using known relationship.

Assignment / Questions: (2 & 2) 1. Derive the displacements at different nodes using known relationship

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 21-11-2022
Semester	: I	Unit- II Assembly of stiffness matrices
Name of the Program: M	.Tech (Structural Engineering)	Year: I
Course/Subject: Matrix M	Methods in Structural Analysis	Course Code: GR22D5001
Name of the Faculty: Dr.	GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFESS	OR	
Lesson No: 16		Duration of Lesson: <u>1hr</u>
Lesson Title: Discuss on	direct stiffness method.	
INSTRUCTIONAL/LESS	SON OBJECTIVES:	
On completion of this les 1. Understand the ba approach.	son the student shall be able to: asic steps involved in derivation	of stiffness matrix using direct stiffness

TEACHING AIDS : white board, Different colour markers

TEACHING POINTS :

• Explain the procedure in determination of stiffness matrix using direct stiffness method..

Assignment / Questions: (2 & 2) 1. How to generate stiffness matrix using direct stiffness method.

Signature of faculty

LESSON PLAN

Academic	Year	: 2022-23		Date: 23-11-202	22
Semester		: I	Unit- II Asso	embly of stiffness ma	trices
Name of t	he Program: M.Tech (Structural Engineering)		Year: I	
Course/Su	bject: Matrix Methods	in Structural Analysis		Course Code: GR22	D5001
Name of t	he Faculty: Dr.GVV S	atyanarayana.		Dept.: Civil Engineer	ing
Designatio	n: PROFESSOR				
Lesson N	Io: 17			Duration of Lesson:	<u>1hr</u>
Lesson Tit	le: General procedure	for assembly stiffness m	atrices		
<u>INSTRUC</u>	TIONAL/LESSON O	BJECTIVES:			
On comple	etion of this lesson the	student shall be able to:			
3. Un	derstand the procedure	e in assembling of stiffnes	s matrices.		
4. Un	derstand the importanc	e of assembling of stiffn	ess matrices.		
TEACHIN TEACHIN	IG AIDS : white IG POINTS :	board, Different colour 1	narkers		

• The steps involved in assembling of stiffness matrices.

Assignment / Questions: (2 & 2) 1. Derive the global stiffness matrix using assembling of element stiffness matrices.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 24-11-2022
Semester	: I	Unit- II Assembly of stiffness matrices
Name of the Program: M.Tech (Structural Engineering)	Year: I
Course/Subject: Matrix Methods	in Structural Analysis	Course Code: GR22D5001
Name of the Faculty: Dr.GVV S	atyanarayana.	Dept.: Civil Engineering
Designation: PROFESSOR		
Lesson No: 18		Duration of Lesson: <u>1hr</u>
Lesson Title: Discuss on direct s	tiffness method.	
INSTRUCTIONAL/LESSON O	BJECTIVES:	

On completion of this lesson the student shall be able to:

1. Understand the basic steps involved in derivation of stiffness matrix using direct stiffness approach.

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

• Explain the properties of various support conditions and boundary conditions using in analysis of structures.

Assignment / Questions: (2 & 2) 1. List of properties of supports and boundary conditions.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 28-11-2022
Semester	: I	Unit- II Assembly of stiffness matrices
Name of the Pro	ogram: M.Tech (Structural Engineering)	Year: I
Course/Subject:	Matrix Methods in Structural Analysis	Course Code: GR22D5001
Name of the Fa	culty: Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: F	PROFESSOR	
Lesson No: 1	9	Duration of Lesson: <u>1hr</u>
Lesson Title: D	iscuss on questions in unit-2 from old quest	tion papers.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Determination of stiffness matrix using direct stiffness matrix approach of given structures.
- 2. How to calculate the rotations and deformations at nodal joints?

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

- Evaluate the stiffness matrix using direct stiffness matrix approach of given structures.
- Evaluate the dofs of any structure?

Assignment / Questions: (2 & 2) 1. Evaluate the stiffness matrix using direct stiffness matrix approach of given structures.?

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 29-11-2022
Semester	: I	Unit- II Assembly of stiffness matrices
Name of the Program: M.Tech	(Structural Engineering)	Year: I
Course/Subject: Matrix Method	ls in Structural Analysis	Course Code: GR22D5001
Name of the Faculty: Dr.GVV	Satyanarayana.	Dept.: Civil Engineering
Designation: PROFESSOR		
Lesson No: 20		Duration of Lesson: <u>1hr</u>
Lesson Title: Discuss on question	ons in unit-2 from old que	stion papers .

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 2. Determination of static and kinematic in determinacy of given structures.
- 2. How to calculate dofs of any structure?

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

• Evaluate the global stiffness matrix from local stiffness matrices

Assignment / Questions: (2 & 2) 1. Evaluate the global stiffness matrix from local stiffness matrices?

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23		Date: 30)-11-2022
Semester	: I	Unit-III Introductio	n about Flexibility	matrix method
Name of the Program: M.Tech	(Structural En	gineering)	Year: I	
Course/Subject: Matrix Method	ls in Structural	Analysis	Course Code	e: GR22D5001
Name of the Faculty: Dr.GVV	Satyanarayana		Dept.: Civil	Engineering
Designation: PROFESSOR				
Lesson No: 21			Duration of Lesson:	<u>1hr</u>
Lesson Title: Introduction about	t flexibility m	atrix or force method		
INSTRUCTIONAL/LESSON	<u>OBJECTIVES</u>	<u>.</u>		

On completion of this lesson the student shall be able to:

- 1. Understand the procedure to analyze any continuous beam having static indeterminate structure.
- 2. Calculate redundants using flexibility matrix method.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- Analyze the continuous beams using flexibility matrix method
- Evaluate the support reactions and moments using flexibility matrix method

Assignment / Questions: (3 & 3) 1. Evaluate the support reactions and moments for given loading using Force method.

(3 & 3) 2. Draw BMD and SFD for analyzed continuous beams.

Signature of faculty

LESSON PLAN

Academic	Year	: 2022-23		Date: 01-	-12-2022
Semester		: I	Unit-III Introduction	about Flexibility	matrix method
Name of the	e Program: M.Teo	ch (Structural En	gineering)	Year: I	
Course/Sub	oject: Matrix Meth	ods in Structural	Analysis	Course Code:	: GR22D5001
Name of th	e Faculty: Dr.GV	V Satyanarayana.		Dept.: Civil H	Engineering
Designation	n: PROFESSOR				
Lesson No	: 22		D	uration of Lesson:	<u>1hr</u>
Lesson Titl	e: Flexibility mat	rix approach for	statically in determinate	beams force metho	od
<u>INSTRUC'</u>	TIONAL/LESSON	OBJECTIVES:			
On comple	tion of this lesson	the student shall	be able to:		
1. Ho	w to calculate the	static indetermina	acy of given structure?		
2. Ho	w to calculate redu	indants using flex	xibility matrix method.		
TEACH	ING AIDS	: white board, Di	fferent colour markers		

TEACHING POINTS :

- Analyze the continuous beams using flexibility matrix method
- Evaluate the support reactions and moments using flexibility matrix method

Assignment / Questions: (3 & 3) 1. Evaluate the support reactions and moments for given loading using Force method.

(3 & 3) 2. Draw BMD and SFD for analyzed continuous beams.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23		Date: 05-12-2022	
Semester	: I	Unit-III In	troduction about Flexibility matrix method	
Name of the Program: M.Tech	(Structural En	gineering)	Year: I	
Course/Subject: Matrix Method	s in Structural	Analysis	Course Code: GR22D5001	
Name of the Faculty: Dr.GVV	Satyanarayana		Dept.: Civil Engineering	
Designation: PROFESSOR				
Lesson No: 23			Duration of Lesson: <u>1hr</u>	
Lesson Title: Methodology to calculate the redundants of beam at joints using force method				
INSTRUCTIONAL/LESSON	DBJECTIVES	<u>:</u>		
On completion of this lesson the	e student shall	be able to:		

1. Understand the procedure to analyze any continuous beam having static indeterminate structure.

2. Calculate redundants using flexibility matrix method.

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

- Analyze the continuous beams using flexibility matrix method
- Evaluate the support reactions and moments using flexibility matrix method

Assignment / Questions: (3 & 3) 1. Evaluate the support reactions and moments for given loading using Force method. (3 & 3) 2. Draw BMD and SFD for analyzed continuous beams.

Signature of faculty

LESSON PLAN

Academic	Year	: 2022-23		Date: 06-12-2022	
Semester		: I	Unit-III Introduction	n about Flexibility matrix method	
Name of t	he Program: M.Tech (Structural Er	ngineering)	Year: I	
Course/Su	bject: Matrix Methods	in Structura	l Analysis	Course Code: GR22D5001	
Name of t	he Faculty: Dr.GVV S	atyanarayana		Dept.: Civil Engineering	
Designatio	n: PROFESSOR				
Lesson No	p: 24			Duration of Lesson: <u>1hr</u>	
Lesson Tit	le: Methodology to ca	alculate the re	edundants of beam at jo	bints using force method	
INSTRUC	TIONAL/LESSON O	BJECTIVES	<u>:</u>		
On comple	On completion of this lesson the student shall be able to:				
1. Und	erstand the procedure	to analyze a	ny continuous beam ha	ving static indeterminate structure.	
3. Ca	lculate redundants usir	ng flexibility	matrix method.		

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- Analyze the continuous beams using flexibility matrix method
- Evaluate the support reactions and moments using flexibility matrix method

Assignment / Questions: (3 & 3) 1. Evaluate the support reactions and moments for given loading using Force method. (3 & 3) 2. Draw BMD and SFD for analyzed continuous beams.

Signature of faculty

LESSON PLAN

Academic Yea	ar :	2022-23		Date	e: 07-12-2022
Semester	:	Ι	Unit-III Introduction	n about Flexibi	lity matrix method
Name of the F	Program: M.Tech (St	ructural Eng	gineering)	Year: I	
Course/Subjec	t: Matrix Methods in	n Structural	Analysis	Course (Code: GR22D5001
Name of the F	Faculty: Dr.GVV Sat	yanarayana.		Dept.: C	vivil Engineering
Designation:	PROFESSOR				
Lesson No:	25			Duration of Les	son: <u>1hr</u>

Lesson Title: method Analyze continuous beams using flexibility matrix method carrying with different loads.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand the procedure to analyze any continuous beam using force method having statically indeterminate.
- 2. Calculate redundants using flexibility matrix method.

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

- Analyze the continuous beams using flexibility matrix method
- Evaluate the support reactions and moments using flexibility matrix method

Assignment / Questions: (3 & 3) 1. Evaluate the support reactions and moments for given loading using Force method. (3 & 3) 2. Draw BMD and SFD for analyzed continuous beams.

Signature of faculty

LESSON PLAN

Academic Yea	ar	: 2022-23		Date: 08-12-2022
Semester		: I	Unit-III Introduction abo	ut Flexibility matrix method
Name of the F	Program: M.Tech (S	tructural Er	ngineering)	Year: I
Course/Subject: Matrix Methods in Structural Analysis			1 Analysis	Course Code: GR22D5001
Name of the F	Faculty: Dr.GVV Sa	ityanarayana	ı.	Dept.: Civil Engineering
Designation:	PROFESSOR			
Lesson No:	26		Dura	tion of Lesson: 1hr

Lesson Title: method Analyze continuous beams using flexibty matrix method carrying with different loads.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand the procedure to analyze any continuous beam using force method having statically indeterminate.
- 2. Calculate redundants using flexibility matrix method.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- Analyze the continuous beams using flexibility matrix method
- Evaluate the support reactions and moments using flexibility matrix method

Assignment / Questions: (3 & 3) 1. Evaluate the support reactions and moments for given loading using Force method.

(3 & 3) 2. Draw BMD and SFD for analyzed continuous beams.

Signature of faculty

LESSON PLAN

Academic Yea	ar :	2022-23		Date: 12	2-12-2022
Semester	:	Ι	Unit-III Introduction	n about Flexibility	matrix method
Name of the F	Program: M.Tech (Str	ructural Eng	gineering)	Year: I	
Course/Subjec	t: Matrix Methods ir	Structural	Analysis	Course Code	e: GR22D5001
Name of the H	Faculty: Dr.GVV Saty	yanarayana.		Dept.: Civil	Engineering
Designation:	PROFESSOR				
Lesson No:	27			Duration of Lesson:	<u>1hr</u>

Lesson Title: method Analyze continuous plane truss using flexibility matrix method carrying with different loads.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand the procedure to analyze any plane truss using force method having statically Indeterminacy up to 2.
- 2. Calculate redundant forces using flexibility matrix method.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- Analyze the plane truss using flexibility matrix method
- Evaluate the redundant forces in a plane truss using flexibility matrix method

Assignment / Questions: (3 & 3) 1. Evaluate the redundant force in a plane truss for given loading using Force method.

Signature of faculty

LESSON PLAN

Academic Ye	ar	: 2022-23				Date: 13	3-12-2022
Semester		: I	Unit-III	Introduction	1 about	Flexibility	matrix method
Name of the l	Program: M.Tech (S	Structural Eng	gineering)		Ŋ	Year: I	
Course/Subject	ct: Matrix Methods	in Structural	Analysis		(Course Code	e: GR22D5001
Name of the 1	Faculty: Dr.GVV Sa	atyanarayana.			Ι	Dept.: Civil	Engineering
Designation:	PROFESSOR						
Lesson No:	28]	Duration	of Lesson:	<u>1hr</u>
Lesson Title:	Analyze continuous different loads.	plane frame	using fle	xibility matri	ix metho	od carrying	with

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Understand the procedure to analyze any plane frame using force method having statically Indeterminacy up to 3.
- 2. Calculate redundant forces and moments using flexibility matrix method.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

Analyze the plane frame using flexibility matrix method
Evaluate the redundant forces in a plane frame using flexibility matrix method

Assignment / Questions: (3 & 3) 1. Evaluate the redundant force in a plane frame for given loading using Force method.

Signature of faculty

LESSON PLAN

Academic Yea	ar :	2022-23		Date:	: 14-12-2022
Semester	:	Ι	Unit-III Introduction	n about Flexibility	matrix method
Name of the F	Program: M.Tech (Str	ructural En	gineering) Year: I		
Course/Subject: Matrix Methods in Structural Analysis Course Code: GR22D5001					GR22D5001
Name of the F	Faculty: Dr.GVV Sat	yanarayana		Dept.: Civil	Engineering
Designation:	PROFESSOR				
Lesson No:	29			Duration of Lesson:	<u>1hr</u>

Lesson Title: Discuss on questions in unit-3 from old question papers .

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Determination of unknown reactions of a continuous beam using flexibility matrix method..

2. Draw SFD and BMDs of given continuous beam.

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

• Evaluate the unknown reactions of a continuous beam using flexibility matrix method..

• Draw SFD and BMDs of given continuous beam.

Assignment / Questions: (3 & 3) 1. Analyse the continuous beam using flexibility matrix approach.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 15-12-2022
Semester	: I Unit-III Introduction	a about Flexibility matrix method
Name of the Program: M.Tech (S	Structural Engineering) Year: I	
Course/Subject: Matrix Methods	in Structural Analysis	Course Code: GR22D5001
Name of the Faculty: Dr.GVV Sa	atyanarayana.	Dept.: Civil Engineering
Designation: PROFESSOR		
Lesson No: 30		Duration of Lesson: <u>1hr</u>
Lesson Title: Discuss on question	ns in unit-3 from old question pap	ers.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Determination of redundant forces in a statically indeterminate plane truss using flexibility matrix method.

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

• Evaluate of redundant forces in a statically indeterminate plane truss using flexibility matrix method.

Assignment / Questions: (3 & 3) 1. Evaluate of redundant forces in a statically indeterminate plane truss using flexibility matrix method.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 19-12-2022
Semester	: I Unit-III Introduction	a about Flexibility matrix method
Name of the Program: M.Tech (S	Structural Engineering) Year: I	
Course/Subject: Matrix Methods	in Structural Analysis	Course Code: GR22D5001
Name of the Faculty: Dr.GVV Sa	atyanarayana.	Dept.: Civil Engineering
Designation: PROFESSOR		
Lesson No: 31		Duration of Lesson: <u>1hr</u>
Lesson Title: Discuss on question	ns in unit-3 from old question pap	ers.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1.. Determination of redundant forces in a statically indeterminate plane frame using flexibility matrix method.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Evaluate of redundant forces in a statically indeterminate plane frame using flexibility matrix method.

Assignment / Questions: (3 & 3) 1. Evaluate of redundant forces in a statically indeterminate plane truss using flexibility matrix method

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 20-12-2022
Semester	: I U	Init-IV Introduction about stiffness matrix method
Name of the Program: M.Teo	ch (Structural Engin	eering) Year: I
Course/Subject: Matrix Meth	ods in Structural A	analysis Course Code: GR22D5001
Name of the Faculty: Dr.GV	V Satyanarayana.	Dept.: Civil Engineering
Designation: PROFESSOR		
Lesson No: 32		Duration of Lesson: <u>1hr</u>
Lesson Title: Introduction ab Kinematically	out stiffness matrix indeterminate struct	or displacement method and applications to tures
INSTRUCTIONAL/LESSON	OBJECTIVES:	

On completion of this lesson the student shall be able to:

- 1. Understand the procedure to analyze any continuous beam with kinematic indeterminate structure.
- 2. Calculate the dof's of any given structure.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

Analyze the continuous beams using stiffness matrix method
Evaluate the support moments using stiffness matrix method

Assignment / Questions: (4 & 4) 1. Evaluate the support moments for given loading using displacement Method.

(4 & 4) 2. Draw BMD and SFD for analyzed continuous beams.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23		Date: 21-12-2022
Semester	: I	Unit-IV Introduction	about stiffness matrix method
Name of the Program: M.Tech (Structural Engineering)			Year: I
Course/Subject: Matrix M	ethods in Structural	Analysis	Course Code: GR22D5001

Name of the Faculty: Dr.GVV Satyanarayana.

Designation: PROFESSOR

Lesson No: 33

Duration of Lesson: <u>1hr</u>

Dept.: Civil Engineering

Lesson Title: Stiffness matrix approach to kinematically indeterminate beams.

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Calculate the kinematic indeterminacy (KID) of given beam.
- 2. Understand in calculation of support rotations and moments using displacement method

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- Explain the procedure to evaluate KID of the given beam or any structure.
- Evaluate the support rotations and moments in continuous beams subjected various loading using stiffness matrix method.

Assignment / Questions: (4 & 4) 1. Evaluate support rotations of a given continuous beam using displacement method.

(4 & 4) 2. Evaluate the support moments of a continuous beams using displacement method.

Signature of faculty

LESSON PLAN

Academic Ye	ar	: 2022-23			Date: 22-12-2022
Semester		: I	Unit-IV Intro	duction ab	out stiffness matrix method
Name of the I	Program: M.Tech (S	Structural Engi	ineering)		Year: I
Course/Subject	et: Matrix Methods	in Structural	Analysis		Course Code: GR22D5001
Name of the I	Faculty: Dr.GVV Sa	atyanarayana.			Dept.: Civil Engineering
Designation:	PROFESSOR				
Lesson No:	34		D	uration of L	esson: <u>1hr</u>
Lesson Title:	Methodology to cal method.	culate the sup	port moments	of beam join	ts using stiffness matrix

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Analyze the continuous beam using displacement method.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Analyze the kinematically indeterminate of beams.

Assignment / Questions: (4 & 4) 1. Analyze the kinematically indeterminate structure.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 02-01-2023		
Semester	: I Unit-IV Introdu	uction about stiffness matrix method		
Name of the Program: M.Tech (Structural Engineering)	Year: I		
Course/Subject: Matrix Methods	s in Structural Analysis	Course Code: GR22D5001		
Name of the Faculty: Dr.GVV S	Satyanarayana.	Dept.: Civil Engineering		
Designation: PROFESSOR				
Lesson No: 35		Duration of Lesson: <u>1hr</u>		
Lesson Title: Methodology to calculate the redundants forces at beam joints using stiffness matrix method.				
INSTRUCTIONAL/LESSON O)BJECTIVES:			
On completion of this lesson the	student shall be able to:			

1. 1. Analyze the KID structure using displacement method.

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

- Analyze the kinematically indeterminate of beams.
- 1. Assignment / Questions: (4 & 4) 1. Analyze the kinematically indeterminate structure.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23			Date:03-01-2023
Semester	: I	Unit-IV	Introduction abou	nt stiffness matrix method
Name of the Program: M.Tech (S	Structural Eng	gineering)	Year: I
Course/Subject: Matrix Methods	in Structural	Analysis		Course Code: GR22D5001
Name of the Faculty: Dr.GVV Sa	atyanarayana.			Dept.: Civil Engineering
Designation: PROFESSOR				
Lesson No: 36			Duratio	on of Lesson: <u>1hr</u>
Lesson Title: Analyze continuous	beams using	g stiffness	matrix method can	rrying with different loads.
INSTRUCTIONAL/LESSON O	BJECTIVES:			

On completion of this lesson the student shall be able to:

- 1. Understand to analyze continuous beams using stiffness matrix method with kinematic indeterminacy 1, 2 or 3.
- 2. Draw Bending Moment Diagram (BMD) & Shear force diagram (SFD) after analysis.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- Evaluation of KID beams.
- Draw BMD and SFD after analysis.

Assignment / Questions: (4 & 4) 1. Analyze KID beams using displacement method under given loading.

(4 & 4) 2. Draw Bending Moment Diagram (BMD) & Shear force diagram (SFD) for frame.

Signature of faculty

LESSON PLAN

Academic Ye	ear	: 2022-23		Date: 04-0	1-2023
Semester		: I	Unit-IV Introduction	about stiffness matrix	method
Name of the I	Program: M.Tech (S	Structural E	ngineering)	Year: I	
Course/Subje	ct: Matrix Methods	in Structura	l Analysis	Course Code: C	GR22D5001
Name of the I	Faculty: Dr.GVV Sa	atyanarayana	a.	Dept.: Civil Eng	gineering
Designation:	PROFESSOR				
Lesson No:	37			Duration of Lesson: 11	n

Lesson Title: Analyze continuous beams using stiffness matrix method carrying with different loads and sinking supports

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Analyze continuous beams using stiffness matrix method carrying with different loads and sinking supports
- 2. To draw Bending Moment Diagram (BMD) & Shear force diagram (SFD) after analysis.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- Analyze continuous beams using stiffness matrix method carrying with different loads and sinking supports
- Draw BMD and SFD after analysis.

Assignment / Questions: (4 & 4) 1. Analyze continuous beams using stiffness matrix method carrying with different loads and sinking supports

(4 & 4) 2. Draw Bending Moment Diagram (BMD) & Shear force diagram (SFD) for portal frame after analysis.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 05-01-2023
Semester	: I Unit-IV	Introduction about stiffness matrix method
Name of the Prog	ram: M.Tech (Structural Engineering)	Year: I
Course/Subject: N	Matrix Methods in Structural Analysis	Course Code: GR22D5001
Name of the Facu	ılty: Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PR	OFESSOR	
Lesson No: 38		Duration of Lesson: <u>1hr</u>
Lesson Title: Ana	lyze plane truss by using stiffness matr	ix methods carrying with different loads

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Analyze the plane truss by using stiffness matrix methods carrying continuous beams with different loadings.

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

- Analyze the plane truss carrying with different loadings.
- Draw BMD and SFD after analysis.

Assignment / Questions: (3 & 3) 1. Analyze the plane truss by using stiffness matrix methods carrying with different loadings.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 09-01-2023
Semester	: I Unit-IV	Introduction about stiffness matrix method
Name of the Program: M.Tech (S	Structural Engineering)	Year: I
Course/Subject: Matrix Methods	in Structural Analysis	Course Code: GR22D5001
Name of the Faculty: Dr.GVV Sa	atyanarayana.	Dept.: Civil Engineering
Designation: PROFESSOR		
Lesson No: 39		Duration of Lesson: <u>1hr</u>
Lesson Title: Analyze plane fram	e by using stiffness ma	trix methods carrying with different loads
INSTRUCTIONAL/LESSON O	BJECTIVES:	

On completion of this lesson the student shall be able to:

1. Analyze the plane frame by using stiffness matrix methods carrying continuous beams with different loadings.

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

- Analyze the plane frame carrying with different loadings.
- Draw BMD and SFD after analysis.

Assignment / Questions: (3 & 3) 1. Analyze the plane frame by using stiffness matrix methods carrying with different loadings.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23		Date: 10-01-2023
Semester	: I	Unit-IV Introduction at	oout stiffness matrix method
Name of the Program: M.Tec	h (Structural Eng	gineering)	Year: I
Course/Subject: Matrix Meth	ods in Structural	Analysis	Course Code: GR22D5001
Name of the Faculty: Dr.GV	√ Satyanarayana.		Dept.: Civil Engineering
Designation: PROFESSOR			
Lesson No: 40			Duration of Lesson: <u>1hr</u>
Lesson Title: Analyze Discus	on old question	papers	
INSTRUCTIONAL/LESSON	OBJECTIVES:		
On completion of this lesson	the student shall	be able to:	
1. Analyze the continuou	is beam from ok	d question papers having K	ID 2 or 3.
2. Draw Bending Momen	nt Diagram (BM)	D) & Shear force diagram (SFD) after analysis.
TEACHING AIDS TEACHING POINTS	white board, Di	fferent colour markers	

- Analyse the continuous beam from old question papers having KID 2 or 3.
- Draw BMD and SFD after analysis.

Assignment / Questions: (4 & 4) 1. Analyze the continuous beam from old question papers having KID 2 or 3.

(4 & 4) 2. Draw Bending Moment Diagram (BMD) & Shear force diagram (SFD) for continuous beam after analysis.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23		Date: 11-01-2023
Semester	: I	Unit-III Intr	roduction about stiffness matrix method
Name of the Program:	M.Tech (Structural E	ngineering)	Year: I
Course/Subject: Matri	K Methods in Structura	ll Analysis	Course Code: GR22D5001
Name of the Faculty:	Dr.GVV Satyanarayana	a.	Dept.: Civil Engineering
Designation: PROFE	SSOR		
Lesson No: 41			Duration of Lesson: <u>1hr</u>
Lesson Title: Solve ol	l question papers		
INSTRUCTIONAL/LI	ESSON OBJECTIVES	<u>S:</u>	
On completion of this	lesson the student shall	ll be able to:	
 Analyze the plan Evaluation of k 	e frame by using stiffing inematic indeterminacy	ness matrix meth y or total DOF o	hods from old question papers. of structure.

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:Analyse any kinematic indeterminate plane frame using displacement method of structure.

Assignment / Questions: (4 & 4) 1. Analyze the plane frame by using stiffness matrix methods

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23		Date: 12-01-2023
Semester	: I	Unit-III Introduction abo	ut stiffness matrix method
Name of the Program: M.Tech (Structural Eng	gineering)	Year: I
Course/Subject: Matrix Methods	in Structural	Analysis	Course Code: GR22D5001
Name of the Faculty: Dr.GVV S	atyanarayana.		Dept.: Civil Engineering
Designation: PROFESSOR			
Lesson No: 42			Duration of Lesson: <u>1hr</u>
Lesson Title: Solve old question	paper proble	ms in unit-4	
INSTRUCTIONAL/LESSON O	BJECTIVES:		
On completion of this lesson the	student shall	be able to:	

1. Understand the analysis of KID structures using displacement method.

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

• Explain old question paper problems in unit-3 using displacement methods.

Assignment / Questions: (4 & 4) 1. Determine the kinematic indeterminacy and applied appropriate co-ordinates as per dof.

(4 & 4) 2. Analyse the KID structures using displacement method and draw SFD and BMD's.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23		Date: 17-01-2023
Semester	: I	Unit-V Introduction	about special analysis procedures
Name of the Program: M.Tech (Structural En	gineering)	Year: I
Course/Subject: Matrix Methods	s in Structural	Analysis	Course Code: GR22D5001
Name of the Faculty: Dr.GVV S	atyanarayana.		Dept.: Civil Engineering
Designation: PROFESSOR			
Lesson No: 43			Duration of Lesson: <u>1hr</u>
Lesson Title: Introduction about	special analy	sis procedures	
INSTRUCTIONAL/LESSON C	BJECTIVES:	1	

On completion of this lesson the student shall be able to:

1. Understand the importance and role of special procedure in analysis of structures.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Explain the methodology of special procedures in analysis of structures.

Assignment / Questions: (5 & 5) 1. State the need of special procedures in analysis of structures.

Signature of faculty

LESSON PLAN

Academic	Year	: 2022-23		Date: 18-01-2023
Semester		: I	Unit-IV Introduction about	special analysis procedures
Name of the	ne Program: M.Tech (Structural E	Engineering)	Year: I
Course/Sul	oject: Matrix Methods	in Structur	al Analysis	Course Code: GR22D5001
Name of the	ne Faculty: Dr.GVV S	atyanarayan	a.	Dept.: Civil Engineering
Designation	n: PROFESSOR			
Lesson No	o: 44			Duration of Lesson: <u>1hr</u>
Lesson Titl	le: What is Static cond	lensation of	f structures?	
INSTRUC On comple 1. Un 2. An	TIONAL/LESSON O tion of this lesson the derstand the importanc alyze the given structu	BJECTIVE student sha e of Static res using S	<u>S:</u> Ill be able to: condensation of structures static condensation procedure.	
TEACHIN TEACHIN	G AIDS : white NG POINTS :	board, Diff	erent colour markers	
•	Explain the term Stat Explain the procedure	ic condensa e in analysis	tion of structures of structures using Static con	densation.

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:Assignment / Questions:(4 & 4) 1. What is static condensation?(4 & 4) 2. Explain Static condensation and its suitability in analysis of structures.

Signature of faculty

LESSON PLAN

Academic Yea	ar	: 2022-23			Date: 19-01-2023
Semester		: I	Unit-IV Introduction	n abou	t special analysis procedures
Name of the P	rogram: M.Tech (S	Structural En	gineering)		Year: I
Course/Subjec	t: Matrix Methods	in Structural	Analysis		Course Code: GR22D5001
Name of the F	Faculty: Dr.GVV Sa	atyanarayana			Dept.: Civil Engineering
Designation:	PROFESSOR				
Lesson No:	45				Duration of Lesson: <u>1hr</u>
Lesson Title:]	Explain Static cond	lensation wit	h suitable example st	ructures	

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Understand the role of Static condensation in analysis of structures

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

• Explain the Static condensation with suitable example structures

Assignment / Questions: (5 & 5) 1. Explain the term static condensation with suitable example.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23			Date: 23-01-2023
Semester	: I	Unit-IV Introduction	about	special analysis procedures
Name of the Program: M.Tech	(Structural H	Engineering)		Year: I
Course/Subject: Matrix Method	ls in Structur	al Analysis		Course Code: GR22D5001
Name of the Faculty: Dr.GVV	Satyanarayan	a.		Dept.: Civil Engineering
Designation: PROFESSOR				
Lesson No: 46			Duratio	n of Lesson: <u>1hr</u>
Lesson Title: What is sub-struc	turing?			
INSTRUCTIONAL/LESSON On completion of this lesson th 1. Understand the principle	OBJECTIVE the student sha e of sub-stru	<u>S:</u> all be able to: acturing.		
TEACHING AIDS : whit TEACHING POINTS :	e board, Diff	erent colour markers		

• Explain the procedure of sub-structuring using analysis of structures.

Assignment / Questions: (5 & 5) 1. Explain the sub-structuring procedure in analysis of structures.

Signature of faculty

LESSON PLAN

Academic	Year	: 2022-2	3			Date: 24-01-202	23
Semester		: I	Unit-IV	Introduction	about s	special analysis proc	edures
Name of the	ne Program: M.Tech (Structural	Engineerir	ng)		Year: I	
Course/Sul	oject: Matrix Methods	in Structu	ıral Analys	sis		Course Code: GR22	D5001
Name of the	ne Faculty: Dr.GVV S	atyanaraya	ina.			Dept.: Civil Engineer	ring
Designation	n: PROFESSOR						
Lesson No	: 47					Duration of Lesson:	<u>1hr</u>
Lesson Tit	e: Importance of sub-	structuring	g in structi	ural analysis			
INSTRUCTIONAL/LESSON OBJECTIVES: On completion of this lesson the student shall be able to:							
1. Understand about the importance of sub-structuring							
TEACHIN TEACHIN	G AIDS : white NG POINTS :	board, Di	fferent col	our markers			

• Explain the role of sub-structuring in analysis of structures.

Assignment / Questions: (5 & 5) 1. Explain the role sub-structuring in analysis of structures.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	3	Date: 30-01-2023
Semester Name of the Pro	: I ogram: M.Tech (Structural)	Unit-IV Introduction about Engineering)	special analysis procedures Year: I
Course/Subject:	Matrix Methods in Structur	ral Analysis	Course Code: GR22D5001
Name of the Fac	culty: Dr.GVV Satyanaraya	na.	Dept.: Civil Engineering
Designation: P	ROFESSOR		
Lesson No: 48	8		Duration of Lesson: <u>1hr</u>
Lesson Title: W INSTRUCTION On completion of 1. Understa TEACHING	That is effect due to initial and <u>AL/LESSON OBJECTIVE</u> of this lesson the student sh nd the effect due to initial an AIDS : white board,	I thermal stresses in structures? <u>ES:</u> all be able to: nd thermal stresses in structures Different colour markers	
TEACHING	POINTS :		
Explain	the effects due to initial and	thermal stresses in structures	

Assignment / Questions: (5 & 5) 1. Describe the effects due to initial and thermal stresses in structures

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 31-01-2023
Semester	: I	Unit-V Shear walls
Name of the Program: M.T	ech (Structural Engineering)	Year: I
Course/Subject: Matrix Me	ethods in Structural Analysis	Course Code: GR22D5001
Name of the Faculty: Dr.G	VV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFESSO	R	
Lesson No: 49		Duration of Lesson: <u>1hr</u>
Lesson Title: - Introduction	about shear walls.	
INSTRUCTIONAL/LESSO On completion of this lesso	<u>ON OBJECTIVES:</u> on the student shall be able to:	
1. Understand the defi	nition of shear walls.	
TEACHING AIDS TEACHING POINTS	: white board, Different colour markers :	

• Explain about shear walls.

Assignment / Questions: (5 & 5) 1. Discus about definition of shear walls.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 01-02-2023
Semester	: 11	Unit-V Shear walls
Name of the Program: M.Te	ech (Structural Engineering)	Year: I
Course/Subject: Matrix Met	thods in Structural Analysis	Course Code: GR22D5001
Name of the Faculty: Dr.GV	/V Satyanarayana.	Dept.: Civil Engineering
Designation: PROFESSO	R	
Lesson No: 50		Duration of Lesson: <u>1hr</u>
Lesson Title: Necessity of s	hear walls in structures and their shapes	3
INSTRUCTIONAL/LESSO	N OBJECTIVES:	

On completion of this lesson the student shall be able to:

- Know about importance of shear walls in building constructions.
- Understand the shapes of shear walls and their role in building constructions.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

- Explain about importance of shear walls in building constructions.
- Explain various shapes of shear walls used in structures.

Assignment / Questions: (5 & 5) 1. Discuss on various shapes of shear walls used in structures.
 (5 & 5) 2. Discuss on importance of shear walls in building constructions.

Signature of faculty

LESSON PLAN

Academic Ye	ar :	2022-23	Date:01-02-2023
Semester	:	Ι	Unit-V Shear walls
Name of the 1	Program: M.Tech (St	ructural Engineering)	Year: I
Course/Subject: Matrix Methods in Structural Analysis		Course Code: GR22D5001	
Name of the l	Faculty: Dr.GVV Sat	yanarayana.	Dept.: Civil Engineering
Designation:	PROFESSOR		
Lesson No:	51		Duration of Lesson: <u>1hr</u>
Lesson Title:	Importance of shear v	valls in structures and their location in struc	tures.

STRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

• Know about the locations of shear walls and role of shear walls against earthquake or lateral loads acting on structures.

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Explain about the locations of shear walls and role of shear walls against earthquake or lateral loads acting on structures.

Assignment / Questions: (5 & 5) 1. Write about the locations of shear walls and role of shear walls against earthquake or lateral loads acting on structures.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 02-02-2023	
Semester	: I	Unit-V Shear walls	
Name of the Program: M.	Tech (Structural Engineering)	Year: I	
Course/Subject: Matrix M	ethods in Structural Analysis	Course Code: GR22D5001	
Name of the Faculty: Dr.C	SVV Satyanarayana.	Dept.: Civil Engineering	
Designation: PROFESSO	DR		
Lesson No: 52		Duration of Lesson: <u>1hr</u>	
Lesson Title: Structural behaviour of large frames with and without shear walls			
<u>INSTRUCTIONAL/LESSON OBJECTIVES:</u> On completion of this lesson the student shall be able to: 1. Understand the behaviour large frames with and without shear walls			
TEACHING AIDS TEACHING POINTS	: white board, Different colour m	narkers	

• Explain the behaviour of large frames with and without shear walls.

Assignment / Questions: (5 & 5) 1. Narrate the behaviour of large frames with and without shear walls.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 06-02-2023
Semester	: I	Unit-V Shear walls
Name of the Program: M	.Tech (Structural Engineering)	Year: I
Course/Subject: Matrix M	Methods in Structural Analysis	Course Code: GR22D5001
Name of the Faculty: Dr.	GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFESS	OR	
Lesson No: 53		Duration of Lesson: <u>1hr</u>
Lesson Title: Structural b	ehaviour of large frames with and with	out shear walls
<u>INSTRUCTIONAL/LESS</u> On completion of this les 1. Understand the be	SON OBJECTIVES: son the student shall be able to: shaviour large frames with and without	shear walls
TEACHING AIDS TEACHING POINTS	: white board, Different colour mark :	cers
• Explain the beha	viour of large frames with and without	shear walls. • Explain

Assignment / Questions: (5 & 5) 1. Narrate the behaviour of large frames with and without shear walls.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 07-02-2023
Semester	: I	Unit-V Shear walls
Name of the Prop	gram: M.Tech (Structural Engineering)	Year: I
Course/Subject:	Matrix Methods in Structural Analysis	Course Code: GR22D5001
Name of the Fac	ulty: Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: Pl	ROFESSOR	
Lesson No: 54	ŀ	Duration of Lesson: <u>1hr</u>
Lesson Title: Ap	proximate methods of analysis for shear v	valls
INSTRUCTION On completion o 1. Understar TEACHING	walls. r markers	
TEACHING	PUINIS :	

• Explain various approximate methods of analysis for shear walls.

Assignment / Questions: (5 & 5) 1. Discuss on various approximate methods of analysis for shear walls.

Signature of faculty

LESSON PLAN

Academic Ye	ar	: 2022-23	Date: 08-02-202	23
Semester		: I	Unit-V Shear walls	
Name of the I	Program: M.Tech (S	Structural Engineering)	Year: I	
Course/Subje	ct: Matrix Methods	in Structural Analysis	Course Code: GR22	D5001
Name of the 1	Faculty: Dr.GVV S	atyanarayana.	Dept.: Civil Engineer	ing
Designation:	PROFESSOR			
Lesson No:	55		Duration of Lesson:	<u>1hr</u>
Lesson Title:	Approximate metho	ods of analysis for shear walls		
INSTRUCTIO On completio 2. Under	<u>ONAL/LESSON</u> O n of this lesson the rstand in methods o	BJECTIVES: student shall be able to: f analysis against shear walls.		
TEACHIN TEACHIN	IG AIDS : wh IG POINTS :	ite board, Different colour markers		

• Explain various approximate methods of analysis for shear walls.

Assignment / Questions: (5 & 5) 1. Discuss on various approximate methods of analysis for shear walls.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 09-02-2023	
Semester	: I	Unit-V Shear walls	
Name of the Program: M.Tech (Structural Engineering)	Year: I	
Course/Subject: Matrix Methods	in Structural Analysis	Course Code: GR22D5001	
Name of the Faculty: Dr.GVV S	atyanarayana.	Dept.: Civil Engineering	
Designation: PROFESSOR			
Lesson No: 56		Duration of Lesson: <u>1hr</u>	
Lesson Title: Approximate metho	ods of analysis for shear walls		
INSTRUCTIONAL/LESSON O	BJECTIVES:		
On completion of this lesson the student shall be able to: 3 Understand in methods of analysis against shear walls			
TEACHING AIDS : wh TEACHING POINTS :	ite board, Different colour markers		

• Explain various approximate methods of analysis for shear walls.

Assignment / Questions: (5 & 5) 1. Discuss on various approximate methods of analysis for shear walls.

Signature of faculty

LESSON PLAN

Academic Year	: 2022-23	Date: 13-02-2023
Semester	: I	Unit-V Shear walls
Name of the Program: M.Tech (S	Structural Engineering)	Year: I
Course/Subject: Matrix Methods	in Structural Analysis	Course Code: GR22D5001
Name of the Faculty: Dr.GVV S	atyanarayana.	Dept.: Civil Engineering
Designation: PROFESSOR		
Lesson No: 57		Duration of Lesson: <u>1hr</u>
Lesson Title: Approximate metho	ods of analysis for shear walls	
INSTRUCTIONAL/LESSON O	BJECTIVES:	
4. Understand in methods of	f analysis against shear walls.	
TEACHING AIDS : wh TEACHING POINTS :	ite board, Different colour markers	

• Explain various approximate methods of analysis for shear walls.

Assignment / Questions: (5 & 5) 1. Discuss on various approximate methods of analysis for shear walls.

Signature of faculty