

GR 20 Regulations

I Year II sem

FEM IN STRUCTURAL ENGINEERING (GR20D50012)

UNIT I

Introduction: History and Applications. Spring and Bar Elements, Minimum Potential Energy Principle, Direct Stiffness Method, and Nodal Equilibrium equations, Assembly of Global Stiffness Matrix, Element Strain and Stress. Method of Weighted Residuals: Galerkin Finite Element Method, Application to Structural Elements, Interpolation Functions, Compatibility and Completeness Requirements, polynomial Forms, Applications.

UNIT II

Beam and Truss Elements: Flexure and axial Elements, Element Stiffness Matrix, Element Load Vector and Element stress Vector.

UNIT III

Types:Triangular Elements, Axi-Symmetric Elements,

UNIT IV

Isoparametric Formulation, Rectangular Elements, Three-Dimensional Elements, Numerical Integration, Gaussian Quadrature.

UNIT V

Introduction to non - linear analysis, various methods and their limitations.

TEXT BOOKS :

1. G.S.Krishna Murthy, Finite Element Analysis, theory and programming, 3rd edition, 1994

2. Finite Element Methods in Engineering, Belegundu A.D., Chandrupatla, T.R., Prentice Hall India, 1991.

3. Finite Element Analysis, Seshu P., Prentice-Hall of India, 2005.

REFERENCE BOOKS :

1. Concepts and Applications of Finite Element Analysis, Cook R. D., Wiley J., New York, 1995.

2. Fundamentals of Finite Element Analysis, Hutton David, Mc- Graw Hill, 2004.

3. Finite Element Analysis, Buchanan G.R., McGraw Hill Publications, New York, 1995.

4. Finite Element Method, Zienkiewicz O.C. & Taylor R.L. Vol. I, II & III, Elsevier, 2000

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

Department of Civil Engineering

I M.Tech II (Semester Structural Engineering)

FINITE ELEMENT METHODS IN STRUCTURAL ENGINEERING (GR20D5012)

COURSE FILE CHECK LIST

S.No.	Name of the Format	Page
1.	Syllabus	
2.	Time Table	
3.	Program educational Objectives	
4.	Program objectives	
5.	Course Objectives	
6.	Course Outcomes	
7.	Students Roll List	
8.	Guide lines to study the course books & references, course design & delivery	
9.	Course schedule	
10.	Unit plan/Course Plan	
11.	Evaluation Strategy	
12.	Assessment in relation to COB's and Co's	
13.	Tutorial Sheets	
14.	Assignment Sheets	
15.	Rubric for Course	
16.	Mappings of CO's and Po's	
17.	Model question papers	
18.	Mid-I and Mid-II question papers	
19.	Mid –I marks	
20.	Mid –II marks	
21.	Sample answer scripts and Assignments	
22.	Course materials like notes, PPT's, Videos etc.,	

Gokaraju Rangaraju Institute of Engineering & Technology (Autonomous)

Name of the college & Code: Gokaraju Rangaraju Institute of Engineering & Technology, 24Name of the PG Program: Master of TechnologySpecialization: Structural Engineering

Academic Year & Semester : 2021-22, II Semester

Room No: 4203

Time Table

							w.e.f: 11-04-2022
DAY/TIME	9:00AM- 10:00AM	10.00 AM- 11.00 AM	11.00 AM- 12.00 PM	12.00 PM- 1:00 PM	1.00 PM - 2.00 PM	2.00 PM - 3.00 PM	3.00 PM- 4.00 PM
MON	FEMin SE						
TUE							
WED							
THU	FE	M in SE					
FRI							
SAT							

S.No.	Subject Code	Name of the Subject	Name of the Teacher	JNTUH Faculty ID
1	GR20D5012	Finite Methods In Structural Engineering	Dr. G V V Satyanarayana	03150331-231935
2				
3				
4				
5				
6				
7				
8				

Dr. V.Srinivasa Reddy

M.Tech Coordinator

Name of the Program: M.Tech (Structural Engineering)

Year: I

Course/Subject: FEM in Structural Engineering Course Code: GR20D5012

Program Educational Objective's

PEO 1:

Graduates of the program will equip with professional expertise on the theories, process, methods and techniques for building high-quality structures in a cost-effective manner.

PEO 2:

Graduates of the program will be able to design structural components using contempory software and professional tools with quality practices of international standards.

PEO 3:

Graduates of the program will be effective as both an individual contributor and a member of a development team with professional, ethical and social responsibilities.

PEO 4:

Graduates of the program will grow professionally through continuing education, training, research, and adapting to the rapidly changing technological trends globally in structural engineering.

Name of the Program: M.Tech (Structural Engineering) Year: I

Course/Subject: FEM in Structural Engineering Course Code: GR20D5012

Programme Outcomes

Graduates of the Civil Engineering programme will be able to

- **PO 1:** An ability to independently carry out research / investigation and development to solve practical problems
- PO 2: An ability to write and present a substantial technical report / document.
- **PO 3:** Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's.
- **PO 4:** Assess the impact of professional engineering solutions in an environmental context along with societal, health, safety, legal, ethical and cultural issues and the need for sustainable development.
- **PO 5:** Possesses critical thinking skills and solves core, complex and multidisciplinary structural engineering problems.
- PO 6: Recognize the need for life-long learning to improve knowledge and competence.

COURSE OBJECTIVES

Academic Year : 2021-22

Semester : II

Name of the Program: M.Tech (Structural Engineering)

Course/Subject: FEM in Structural Engineering

Year: I

Name of the Faculty: Dr.GVV Satyanarayana

Course Code: GR20D5012

Dept.: Civil Engineering

Designation: PROFESSOR

On completion of this Subject/Course the student shall be able to:

S.No	Objectives
1	To understand the usage of minimum potential energy principle, weighted residual methods and generating global stiffness matrices.
2.	To enable the student should learn to formulate the global load vectors for flexure and axial elements.
3	To understand the effective usage of CST and axi-symmetric element in Finite element method.
4	To introduce of Iso-parametric, rectangular element and estimate error usingNumerical method.
5	To understand the non-linear analysis.

Signature of HOD

Signature of faculty

Date:

Date:

Note: Please refer to Bloom's Taxonomy, to know the illustrative verbs that can be used to state the objectives.

COURSE OUTCOMES

Academic Year	: 2021-22	
Semester	: П	
Name of the Program: M.Tech	h (Structural Engineering)	Year: I
Course/Subject: FEM in Struc	ctural Engineering	Course Code: GR20D5012
Name of the Faculty: Dr.GVV	⁷ Satyanarayana	Dept.: Civil Engineering
Designation: PROFESSOR.		

The expected outcomes of the Course/Subject are:

S.No	Outcomes
1	Use minimum potential energy principle ad weighted residual methods in Finite Element
	Method.
2	Analyse one dimensional elements like beam and truss element using FEM approach.
3	Evaluation of stress and strains in 2D CST and axisymmetric elements.
4	Formulation of rectangular using Isoparametric formulation, Three dimensional element and
	estimate the error using numerical methods
5	Differentiate various types of non-linear analysis

Signature of HOD

Signature of faculty

Date:

Date:

Note: Please refer to Bloom's Taxonomy, to know the illustrative verbs that can be used to state the outcomes.

M.Tech (Structural Engineering)									
Cours	Course/Subject: FEM in Structural Engineering Course Code: GR20D5012								
	Academic Year 2021-22								
S.No	Student Name	Roll No							
1	ATKAPURAM PRASHANTH	21241D2001							
2	BANDI SRI RAM GOPAL	21241D2002							
3	CHALLA MADHAVI	21241D2003							
4	PAMMIDIVYA	21241D2004							
5	DUMMA UMESH KUMAR	21241D2005							
6	K LATHASREE	21241D2006							
7	MARIYALA VAISHNAVI	21241D2007							
8	MAVOORI PRANAV	21241D2008							
9	MITTAPALLI NAGA ASHWINI	21241D2009							
10	RAVULA VENKATA SURAJ REDDY	21241D2010							
11	REPATI MOHAN BABU	21241D2011							
12	CHERUKU SANDHYA	21241D2012							
13	SHAIK FEROZ	21241D2013							
14	S K SAI CHANDRA	21241D2014							
15	THOTA HARSHAVARDHAN	21241D2015							
16	VARIKUPPULA LALITHA	21241D2016							
17	YAMBA RAMA GNANENDRA SAI	21241D2017							
18	YENUMALA DEVESH GOUD	21241D2018							
19	S PRASHANTH KUMAR	21241D2019							
20	BAVANDLAPELLI THARUN TEJA	21241D2020							
21	G NITISH KUMAR	21241D2021							

GUIDELINES TO STUDY THE COURSE / SUBJECT

Academic Year : 2021-22

Semester : II

Name of the Program: M.Tech (Structural Engineering) Course/Subject: **FEM in Structural Engineering** Year: I Course Code: **GR20D5012**

Name of the Faculty: Dr.GVV Satyanarayana

Dept.: Civil Engineering

Designation: PROFESSOR

Guidelines to study the Course/ Subject: Finite Element Methods in Structural Engineering

Course Design and Delivery System (CDD):

- The Course syllabus is written into number of learning objectives and outcomes.
- These learning objectives and outcomes will be achieved through lectures, assessments, assignments, experiments in the laboratory, projects, seminars, presentations, etc.
- Every student will be given an assessment plan, criteria for assessment, scheme of evaluation and grading method.
- The Learning Process will be carried out through assessments of Knowledge, Skills and Attitude by various methods and the students will be given guidance to refer to the text books, reference books, journals, etc.

The faculty be able to –

- Understand the principles of Learning
- Understand the psychology of students
- Develop instructional objectives for a given topic
- Prepare course, unit and lesson plans
- Understand different methods of teaching and learning
- Use appropriate teaching and learning aids
- Plan and deliver lectures effectively
- Provide feedback to students using various methods of Assessments and tools of Evaluation
- Act as a guide, advisor, counselor, facilitator, motivator and not just as a teacher alone

Signature of HOD

Signature of faculty

Date:

COURSE SCHEDULE

Academic	Year	:	2021-22
Semester		:	Π

Name of the Program: M.Tech (Structural Engineering)

Course/Subject: FEM in Structural Engineering

Year: I

Course Code: GR20D5012

Name of the Faculty: Dr.GVV Satyanarayana

Dept.: Civil Engineering

Designation: PROFESSOR

The Schedule for the whole Course / Subject is:

		Duration	Total No.	
S. No.	Description	From	То	Of
				Periods
1.	Unit – I	11-04-2022	02-05-2022	14
	Introduction			
2.	Unit- II	05-05-2022	12-05-2022	06
	Beam and Truss Elements			
3.	Unit-III	16-05-2022	13-06-2022	12
	Types: Triangular Elements, Axi-Symmetric			
	Elements			
4.	Unit-IV	16-06-2022	11-06-2022	17
	Isoparametric Formulation			
5.	Unit-V	14-07-2022	25-07-2022	06
	Introduction to non-linear analysis			

Total No. of Instructional periods available for the course: 60 Hours / Periods

SCHEDULE OF INSTRUCTIONS COURSE PLAN

Academic Year: 2021-22Semester: IIName of the Program: M.Tech (Structural Engineering)Course/Subject: FEN in Structural EngineeringName of the Faculty: Dr.GVV SatyanarayanaDesignation: PROFESSOR

UNIT NO.: I TO V Year: I Course Code: **GR20D5012** Dept.: Civil Engineering

Unit No.	Lesson No.	Date	No. of Periods	Topics / Sub-Topics	Objectives & Outcomes Nos.	References (Text Book, Journal) Page Nos.:to
1.	1.	11-04-2022	1	Introduction about FEM and concepts of FEM	1 & 1	ntroduction to Finite Element method by Tirupathi Chandra Patla & Belegundu. P 17-17
	2.	11-04-2022	1	History and applications of FEM	1 & 1	P 17-17
	3.	14-04-2022	1	Minimum Potential energy principle	1 & 1	P 26-26
	4.	14-04-2022	1	Discuss on bar and spring element	1 & 1	P 26-27
	5.	18-04-2022	1	Evaluation of stiffness matrix for bar element using minimum potential energy method	1 & 1	P 26-27
	6.	18-04-2022	1	Evaluation of stiffness matrix for bar element using direct stiffness method	1 & 1	P 28-29
	7	21-04-2022	1	Assembly of global stiffness matrices.	1 & 1	P 82-85
	8	21-04-2022	1	Evaluation of stresses and strains in bar element	1 & 1	P 86-94
	9	25-04-2022	1	Discuss on nodal equilibrium equations	1 & 1	P 18-24
	10	25-04-2022	1	Introduction about Method of weighted Residual method	1 & 1	P 30-34
	11	28-04-2022	1	Explain the various Method of weighted Residual method	1 & 1	P 30-34
	12	28-04-2022	1	Explain compatibility & completeness requirements	1 & 1	P 86-87
	13	02-05-2022	1	Polynomial forms and their applications	1 & 1	P 71-74
	14	02-05-2022	1	One dimensional FEM Introduction about 1-D element	1 & 1	P 26-27

			No.		Objectives &	References
Unit			of	Topics / Sub-Topics	Outcomes	(Text Book,
No.	Lesson	Data	Perio		Nos.	Journal)
	No.	Date	ds			Page Nos.:to
				Derivation of stiffness matrix		Introduction to Finite
				for flexure element using		Element method by
2.	1	05-05-2022	1	minimum potential energy	2 & 2	Tirupathi Chandra
	1.			method		Patla & Belegundu.
						P 166-172
				Derivation of stiffness matrix		
		05.05.0000	1	for flexure element using	2 & 2	D 166 170
	2.	05-05-2022	1	direct stiffness approach		P 100-172
				method		
		00.05.2022	1	Evaluation of stresses in a	2 & 2	D 172 175
	3.	09-03-2022	1	flexure element		r 1/3-1/3
		00 05 2022	1	Evaluation of strains in a	2 & 2	D 173 175
	4.	09-03-2022	1	flexure element		r 1/3-1/3
		12 05 2022	1	Derivation of stiffness matrix	2 & 2	D 122 126
	5.	12-03-2022	1	for truss element		г 135-150
				Derivation of stresses and	28.2	
	6	12-05-2022	1	strains matrix for truss	Δα Δ	P 137-145
	0.			element		

			No. of		Objective	References
Unit	Less		Period	Topics / Sub-Topics	s &	(Text Book, Journal)
No.	on	Date	S		Outcomes	Page Nos.:to
	No.				Nos.	
3.	1.	16-05-2022	1	Introduction to Triangular element using in FEM's	3 & 3	Introduction to Finite Element method by Tirupathi Chandra Patla & Belegundu. P 204-207
	2.	16-05-2022	1	Evaluation of stiffness matrix for a triangular element	3 & 3	P 207-213
	3.	19-05-2022	1	Evaluate the stresses and strains induced in triangular element	3 & 3	P 207-213
	4.	19-05-2022	1	Evaluate the forces, stresses and strains induced in triangular element	3 & 3	P 207-213
	5.	23-05-2022	1	Evaluate the forces, stresses and strains induced in triangular element	3 & 3	P 207-213
	б.	23-05-2022	1	Evaluation of stiffness matrix for a CST element	3 & 3	P 214-221
	7.	26-05-2022	1	Evaluation of stiffness matrix for a Axi-Symmetric element	3 & 3	P 258-269
	8.	26-05-2022	1	Evaluate the stresses and strains induced in Axi-Symmetric element	3 & 3	P 269-272
	9.	02-06-2022	1	Evaluate the stresses and strains induced in Axi-Symmetric element	3 & 3	P 269-272
	10.	02-06-2022	1	Exercise problems	3 & 3	
	11.	13-06-2022	1	Solve old question paper problems	3&3	
	12.	13-06-2022	1	Solve old question paper problems	3 & 3	

			No. of		Objectives	References
Unit	Lasson	Date	Periods	Topics / Sub-Topics	&	(Text Book, Journal)
No.	Lesson				Outcomes	Page Nos.:to
	INO.				Nos.	_
			1	Unit-4 Explain Interpolation	4 & 4	Introduction to Finite
	1			elements		Element method by
4.	1.	16-06-2022				Tirupathi Chandra Patla
						& Belegundu.
						P 289- 290
			1	Evaluate the stresses and		D D D D D D D D D D
	2.	16-06-2022		strains induced in rectangular	4 & 4	P 289- 295
				element		
			1	Evaluate the stresses and		
	3.	20-06-2022		strains induced in rectangular	4 & 4	P 289- 295
				element		
			1	Evaluate the forces, stresses		
	4.	20-06-2022		and strains induced in	4 & 4	P 289- 295
				rectangular element		
			1	Evaluate the stresses and		
	5.	23-06-2022		strains induced in rectangular	4 & 4	P 289- 295
				element		
			1	Evaluate the forces, stresses		
	6.	23-06-2022		and strains induced in	4 & 4	P 289- 295
				rectangular element		
			1	Evaluate the forces, stresses		
	7.	27-06-2022		and strains induced in three	4 & 4	P 328- 334
				dimensional element		
			1	Evaluation of stiffness matrix		
	8.	2706-2022		for a three dimensional	4 & 4	P 328- 334
				element		
	9.	30-06-2022	1	Exercise problems	4 & 4	
	10.	30-06-2022	1	Exercise problems	4 & 4	
	11	04-07-2022	1	Exercise problems	4 & 4	
		04-07-2022	1	Solve old question paper		
	12.	01072022	1	problems	4 & 4	
		07-07-2022	1	Solve old question paper		
	13.	07 07 2022	1	problems	4 & 4	
		16-06-2022	1	Solve old question paper		
	14.	10-00-2022	1	problems	4 & 4	
		11.07.2022	1	Explain Numerical integration		
	15.	11-07-2022	1	method used in FEM	4 & 4	P 295- 302
		11.07.2022	1	Explain Cause quadratura		
	16.	11-07-2022	1	Explain Gauss quadrature	4 & 4	P 295- 302
		14.07.2022	1	Estimate the ormer coloulations		
	17	14-07-2022	1	Estimate the error calculations	A 0 A	D 205 202
	1/.			using Gauss quadrature	4 & 4	P 295- 302
				method		

			No. of		Objectives	References
Unit	T	Date	Periods	Topics / Sub-Topics	&	(Text Book, Journal)
No.	Lesson				Outcomes	Page Nos.:to
	NO.				Nos.	
5.		14-07-2022		Unit-5 Introduction in Non-		Introduction to Finite
				linear analysis used in FEM		Element method by
	1		1		5&5	Tirupathi Chandra Patla
	1.					& Belegundu.
						P 318 - 319
	2	18-07-2022	1	Differentiate between various	5 & 5	P 318 - 319
	2.		1	non-linear analysis	5 & 5	1 510 517
	3	18-07-2022	1	Differentiate between various	5 8 5	P 310 320
	5.		1	non-linear analysis	5 & 5	F 519 - 520
	4	21-07-2022	1	Explain the importance of non-	5 8 5	D 210 220
	4.		1	linear analysis	5 & 5	F 519 - 520
	5	21-07-2022	1	Explain the importance of non-	E 0_ E	D 210 220
	3		1	linear analysis	5 & 5	P 319 - 320

Signature of HOD

Signature of faculty

Date:

Date:

Note: 1. ENSURE THAT ALL TOPICS SPECIFIED IN THE COURSE ARE MENTIONED. ADDITIONAL TOPICS COVERED, IF ANY, MAY ALSO BE SPECIFIED IN BOLD
 MENTION THE CORRESPONDING COURSE OBJECTIVE AND OUT COME NUMBERS AGAINST EACH TOPIC.

EVALUATION STRATEGY

Academic Year	: 2021-22	
Semester	: 11	
Name of the Program:	M.Tech (Structural Engineering)	Year: I
Course/Subject: FEM	in Structural Engineering	Course Code: GR20D5012
Name of the Faculty:	Dr.GVV Satyanarayana	Dept.: Civil Engineering
Designation :	PROFESSOR	
1. TARGET:		
A) Percentage for pass	: 98%	
b) Percentage of class:	1^{st} class with distinction - 55% 1^{st} class - 45%	

2. COURSE PLAN & CONTENT DELIVERY

(Please write how you intend to cover the contents: i.e., coverage of Units/Lessons by lectures, design, exercises, solving numerical problems, demonstration of models, model preparation, experiments in the Lab., or by assignments, etc.)

3. METHOD OF EVALUATION

3.1
Continuous Assessment Examinations (CAE-I, CAE-II)

3.2 Assignments/Seminars

- 3.3 🖂 Mini Projects
- 3.4 □ Qui 3.5 □ Semester/End Examination
- 3.6 🖸 Others

4. List out any new topic(s) or any innovation you would like to introduce in teaching the subjects in this Semester.

.....

Signature of HOD Date:

Signature of faculty Date:

GR20D5012 FEM in Structural Engineering	Course Outcomes				
Course Objectives	1	2	3	4	5
1	X				
2		Х			
3			Х		
4				Х	
5					Х

GR20D5012 FEM in Structural Engineering	Course Outcomes				
Assessment	1	2	3	4	5
1	Х				
2		Х			
3			Х		
4				Х	
5					Х

TUTORIAL SHEET - 1

Academic Year: 2021-22ISemester: IIName of the Program: M.Tech (Structural Engineering)Year: ICourse/Subject: FEM in Structural EngineeringCourseName of the Faculty: Dr.GVV Satyanarayana.Dept.: CDesignation: PROFESSORThis Tutorial corresponds to Unit No. 1/ Lesson Introduction

Date: 02-05-2022

Year: I Course code:**GR20D5012** Dept.: Civil Engineering

- Q1. What is basic concept of FEM and its origin?
- Q2. What are the merits and demerits of FEM?
- Q3. Evaluate the value of central deflection for a simply suppoprted beam having central point load 'W'. The beam is uniform through out. Use Rayeleigh Ritz approach.
- Q4. Generate stiffness matrix for bar or 1-D element using direct stiffness matrix and minimum potential Energy methods.
- Q5. For the stepped bar shown in the figure below, determine the nodal displacements, element stress and reactive reactions. Take P = 250 kN, E 200 GPa, $a_1=120 \text{ mm}^2$, $a_2 = 150 \text{ mm}^2$ and $a_3 = 350 \text{ mm}^2$.

Q6. Determine the nodal displacements and redundant forces of the spring system as shown in Figure below:

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: <u>1</u>.....

Outcome Nos.: <u>1</u>.....

Signature of HOD

Signature of faculty

Date:

TUTORIAL SHEET - 2

Academic Year: 2021-22Semester: IIName of the Program:M.Tech (Structural Engineering)Course/Subject:FEM in Structural EngineeringName of the Faculty:Dr.GVV SatyanarayanaDesignation: PROFESSOR

Date: 12-05-2022

Year: I GR20D5012 Dept.: Civil Engineering

This Tutorial corresponds to Unit No. 2/Lesson Beam and Truss Elements

Q1. Generate stiffness matrix for beam element.

Q2. Analyse the beam as shown below:

	100 441	
1		10 Kn/m
A		(ZET) TH
1	- 4m-+	em -t

Q3. Analyse the propped cantilever beam using FEM.

Q4. Analyse the propped cantilever beam using FEM.

Q5. Analyse the propped cantilever beam using FEM..

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 2.....

Outcome Nos.: <u>2, 3</u>.....

Signature of HOD

Signature of faculty

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

TUTORIAL SHEET - 3

Academic Year	: 2021-22	Date: 13-06-2022
Semester	: 11	
Name of the Program: M	.Tech (Structural Engineering)	Year: I
Course/Subject: FEM in	Structural Engineering	GR20D5012
Name of the Faculty: Dr.	GVV Satyanarayana.	Dept.: Civil Engineering

Designation : PROFESSOR

This Tutorial corresponds to Unit No. 3/ Lesson Types: Triangular and Axi symmetric elements

- Q1. Evaluate the shape functions for a CST element.
- Q2. The nodal co-ordinates of a CST element are (1, 2), (5, 3) and (4, 6) at node 1, 2 and 3 respectively. If 'P' is the point inside the element whose X coordinate is 3.3 and shape function at node 1 is 0.3. Determine the other shape functions and Y coordinate of the point 'P'.

Q3. Develop stiffness matrix for the two dimensional plate as shown below:

Signature of HOD

Signature of faculty

Date:

TUTORIAL SHEET - 4

Academic Year	: 2021-22	Date: 14-07-2022
Semester	: II	
Name of the Program: M.T	ech (Structural Engineering)	Year: I
Course/Subject: FEM in S	tructural Engineering	GR20D5012
Name of the Faculty: Dr.G	VV Satyanarayana.	Dept.: Civil Engineering
Designation : PROF	FESSOR	

This Tutorial corresponds to Unit No. 4/ Lesson Iso-Parametric Elements

Q1. Explain the various types of Iso-parametric elements with suitable figures.

Q2. Evaluate shape functions for 4 noded quadrilateral element.

Q3. Determine the Jacobian matrix for 4 noded quadrilateral element.

Q4. Compute the displacements of joint D as shown in figure below for the plane stress condition. Let E = 210 GPa.

Q5. Evaluate the Jacobian matrix at the local co-ordinates ζ , η are (0, 0) for the Element shown in the below.

Q6. Evaluate the strain displacement matrix [B] matrix for an axisymmetric element.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: <u>4</u>.....

Outcome Nos.: <u>4</u>.....

Signature of faculty

Date:

Signature of HOD

TUTORIAL SHEET - 5

Academic Year	: 2021-22	Date: 25-07-2022
Semester	: 11	
Name of the Program:	M.Tech (Structural Engineering)	Year: I
Course/Subject: FEM	in Structural Engineering	GR20D5012
Name of the Faculty:	Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation	: PROFESSOR	X7 II X I I

This Tutorial corresponds to Unit No. 5/ Lesson Introduction to Non-linear Analysis

Q1. Explain the basic concept used in non-linear analysis method?

Q2. State and explain various methods used in non-linear analysis.

Q3. Explain the Iterative procedure and modified Iterative procedure for the analysis of material nonlinear problems and its limitation.

Q4. Explain Incremental procedure to handle material non-linear problems and its limitation.

Signature of HOD

Signature of faculty

Date:

ASSIGNMENT SHEET – 1

Academic Year	: 2021-22	Date: 02-05-2022
Semester	: 11	
Name of the Program: M	Tech (Structural Engineering)	Year: I
Course/Subject: FEM in S	Structural Engineering	Course Code: GR20D5012
Name of the Faculty: Dr.	G.V.V. Satyanarayana	Dept. Civil Engineering
Designation : PF	ROFESSOR	

This Assignment corresponds to Unit No.1(Introduction)

- Q1. What are the merits and demerits of FEM?
- Q2. Explain minimum potential energy or Rayleigh Ritz method .
- Q3. Evaluate the deflection at centre of simply supported beam subjected udl of intensity w per unit run over whole length of beam. Let consider length of span is 'L' and uniform flexural rigidity use minimum potential energy Rayleigh Ritz method.
- Q4. Derive the relationship between stress and strain in form of matrix.
- Q5. Evaluate the stiffness matrix for bar element using
 - a) Direct Stiffness method and b) Minimum Potential energy method.
- Q6. Describe the procedure for assembling stiffness matrix from individual element stiffness matrices.
- Q7. Determine the displacement, stress and strains in the bar as shown figure below:

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 1

Outcome Nos.: 1

Signature of HOD

Signature of faculty

Date:

ASSIGNMENT SHEET – 2

Academic Year	: 2021-22	Date: 12-05-2022
Semester	: 11	
Name of the Program: M.Te	ech (Structural Engineering)	Year: I
Course/Subject: FEM in Str	uctural Engineering	Course Code: GR20D5012
Name of the Faculty: Dr.G.	V.V. Satyanarayana	Dept. Civil Engineering
Designation : PROF	ESSOR	

This Assignment corresponds to Unit No-2. (Beam Elements)

Q1. Derive stiffness matrix for beam or flexure element. Q2. Analyse beam as shown below using FEM.

Q4. Evaluate the relationship between stress and strains.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: <u>2</u> Outcome Nos.: <u>2</u>

Signature of HOD

Signature of faculty

Date:

ASSIGNMENT SHEET – 3

Academic Year	: 2021-22	Date: 13-05-2022
Semester	: П	

Name of the Program: M.Tech (Structural Engineering)

Course/Subject: FEM in Structural Engineering

Course Code: GR20D5012

Name of the Faculty: Dr.G.V.V. Satyanarayana

Dept. Civil Engineering

Year: I

Designation: PROFESSOR

This Assignment corresponds to Unit No.3 Method of Weighted Residuals

Q1.Explain different weighted residual methods.

Q2.What is polynomial expression and state the precaution while selection of a polynomial?

Q3. Differentiate between Compatibility conditions and convergence requirements.

Q4. Evaluate the deflection at centre of simply supported beam subjected udl of intensity w per unit run over whole length of beam. Let consider length of span is 'L' and uniform flexural rigidity use Galerkin's method

Q5. Evaluate the deflection at centre of clamped beam subjected udl of intensity w per unit run over whole length of beam. Let consider length of span is 'L' and uniform flexural rigidity use different weighted residual methods.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

 Objective Nos.: 3

 Outcome Nos.: 3

 Signature of HOD
 Signature of faculty

 Date:
 Date:

ASSIGNMENT SHEET – 4

Academic Year

: 2021-22

Date: 14-07-2022

Semester : II

Name of the Program: M.Tech (Structural Engineering) Course/Subject: <u>FEM in Structural Engineering</u> Year: I Course Code: **GR20D5012**

Name of the Faculty: Dr.G.V.V. Satyanarayana

Dept. Civil Engineering

Designation : PROFESSOR

This Assignment corresponds to Unit No-4 (Types)

Q1. Determine stiffness matrix for CST element.

- Q2. Estimate the following values for the given displacement field in plane stress condition. $\mathbf{u} = (2\mathbf{x}^2 - 3\mathbf{x}\mathbf{y} + \mathbf{y}^2) \mathbf{10}^{-2}$ and $\mathbf{v} = (6\mathbf{x} + 3\mathbf{y}) \mathbf{10}^{-4}\varepsilon_x$, ε_x and γ_{xy} where, x=1 and y=2.
- Q3. Define the term shape function. And Evaluate the shape functions N1, N2 and N3 at the interior point P for the triangular element shown in the figure below.

- Q4. Consider the Iso-parametric quadrilateral with the nodes 1, 2, 3 and 4 at (15, 0), (17.12), (7,10) and (6,2) respectively, which has local coordinates are (0.5,0.5).
 - a) Compute the Jacobian matrix.
 - b) Evaluate the shape functions of 8 nodded rectangular quadrilateral element using Lagrange method.

Q5. Compute the strain displacement matrix for the axisymmetric triangular element as shown in figure below. Also determine the element strains if the nodal displacements are $u_1 = 0.00$, $u_2 = 0.002$, $u_3 = -0.002$, $w_1 = 0.001$, $w_2 = -0.005$ and $w_3 = 0.006$.

Q6. Evaluate strain displacement matrix for the element as shown in figure below at the point (0.5, 0.5)

Q7. a) Explain solution techniques for static loads.

- b) Evaluate the integral I = $\iint (3x^3 + 2xy 7y^3) dx dy$ using Gauss quadrature method.
- c) Evaluate the Integral I = $\int_{-1}^{1} (3e^x + x^2 + \frac{1}{(x+2)})$ using one point and two point Gauss quadrature. Compare this with exact solution.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 4

Outcome Nos.: <u>4</u>

Signature of HOD

Date:

Signature of faculty

ASSIGNMENT SHEET – 5

Academic Year

: 2021-22

Date: 25-07-2022

Semester : II

Name of the Program: M.Tech (Structural Engineering)

Course/Subject: FEM in Structural Engineering

Name of the Faculty: Dr.G.V.V. Satyanarayana

Year: II Course Code: **GR20D5012**

Dept. Civil Engineering

Designation : PROFESSOR

This Assignment corresponds to Unit No-5.

Q1. Differentiate between linear and non-linear approaches used in FEM.

Q2. What are the basic methods used in FEM.

Q3. Explain various application to special structures.

Q4. What are the different software's used in FEM.

Q5. Explain the overall importance of Finite element method in civil engineering.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 5

Outcome Nos.: 5

Signature of HOD

Date:

Signature of faculty

RUBRIC SHEET

Academic Year: 2021-22Semester: IIName of the Program:M.Tech Structural EngineeringCourse/Subject:FEM in Structural Engineering

Course Code: GR20D012

Name of the Faculty: <u>Dr.G V V Satyanarayana</u> Designation: <u>Professor</u> Dept.: Civil Engineering

Objective: To learn basics and concepts of Structural analysis. Student Outcome: Behavioural studies or analyze the structural elements under loading and study different parameters such as induced forces, bending moments, shear forces, stresses, strains, deflection etc.,

			Beginning	Developing	Reflecting Development	Accomplished	Exemplar y	Score
S. No	Name of the Student	Performance Criteria	1	2	3	4	5	
1	21241D 2007	Analysis of structural elements The level of knowledge on types structures such as beams, trusses and frames statically determinate and indetermin ate structures	Low level of knowledge on calculation of support reactions Low level of knowledge on types structures such as beams & trusses statically determinate and indeterminat e frames	Able to discuss the principles of energy theorems Able to discuss types of structures and their importanc e in civil engineeri ng constructi ons	Ability to explain the application of energy theorems Ability to explain types of structures and their importance in civil engineering constructio ns	Full knowledge on application of energy theorems Full knowledge on types of structures and their importance in civil engineering construction s	Analyzing and implement in structures Analysing and application of knowledge on types of structures and their importance in civil engineering constructions	4
		The level of knowledge to analyse various engineering structures.	Low level of knowledge to analyse various engineering structures.	Ability to discuss and to study the various engineeri ng structures	Ability to explain various engineering structures.	Full knowledge on various engineering structures.	Analysing and implementing the knowledge of various engineering structures. Average Score	3

MAPPING

GR20D5012 FEM in Structural Engineering		Cour	se Outc	omes	
Course Objectives	1	2	3	4	5
1	X				
2		Х			
3			Х		
4				Х	
5					Х

GR20D5012 FEM in Structural Engineering		Cour	se Outc	omes	
Assessment	1	2	3	4	5
1	X				
2		X			
3			Х		
4				X	
5					X

GR20D5012 FEM in Structural Engineering		Cours	se Obje	ctives	
Assessments	1	2	3	4	5
1	X				
2		X			
3			Х		
4				X	
5					Х

Course			Program Outcomes						
			3	4	5	6			
GR20D5012 FEM in Structural Engineering	Х	Х	Х	Х	Х	Х			

GR20D5012 FEM in Structural Engineering	Program Outcomes					
Course Outcomes	1	2	3	4	5	6
1. Use minimum potential energy principle ad weighted residual methods in Finite Element Method.	Н				М	М
2. Analyse one dimensional elements like beam and truss element using FEM approach.	М		Μ	М	М	М
3. Evaluation of stress and strains in 2D CST and axisymmetric elements.			М		Μ	М
4. Formulation of rectangular using Isoparametric formulation, Three dimensional element and estimate the error using numerical methods	М		М	М	`	М
5. Differentiate various types of non-linear analysis	Μ	Μ	Μ	Μ	Μ	Μ

I M.TechII Semester Regular Examinations Model Question Paper

FEM IN STRUCTURAL ENGINEERING

(Civil Engineering)

Max Marks: 70

< Note: Type the questions in the given format only, Times New Roman font , size 12 > 12

Instructions:

Time: 3 hours

1. Question paper comprises of Part-A and Part-B

2. Part-A (for 20 marks) must be answered at one place in the answer book.

3. Part-B (for 50 marks) consists of five questions with internal choice, answer all questions.

PART – A

(Answer ALL questions. All questions carry equal marks)

10 * 2 = 20 Marks

1. a.	What are the applications of FEM?	[2]	1	1
b.	List out Weighted Residuals Method	[2]	1	1
c.	Write the stiffness matrix for beam element.	[2]	2	1
d.	Demonstrate the various boundary conditions used in FEM approach	[2]	2	1
e.	Distinguish between CST and LST elements	[2]	3	4
f.	The nodal co-ordinates of a CST element are (1, 2), (5, 3) and (4, 6) at	[2]	3	4
	node 1, 2 and 3 respectively. If 'P' is the point inside the element whose			
	X coordinate is 3.3 and shape function at node 1 is 0.3 Determine the			
	other shape functions and Y coordinate of the point 'P'.			
g.	Compare between Iso, sub and super parametric elements	[2]	4	5
h.	Discuss briefly on Gauss quadrature method.	[2]	4	6
i.	What is non-linear analysis?	[2]	5	1
j.	Explain the basic concept non-linear analysis.	[2]	5	1
	PART – B			
	(Answer ALL questions. All questions carry equal marks)			
	5 * 10 = 50 Marks			
2.	(a)Explain the step wise procedure involved in Finite Element method.	[10]	1	1
	(b))Use Rayleigh Ritz method to find the displacement as shown in figure			
	below: Let the bar is not subjecting any point loads and tractive forces.			

CODE:GRGR20D5012

GR

	(b) Develop B- matrix for the two dimensional plate as shown below:			
	P kN 40 mm -45° 20 mm $E = 200 \text{ GPa}$ $\mu = 0.3$ and t = 10 mm			
	OR			
7.	(a) Why Axi-symmetric is treat as two dimensional element?(b) Find out the strain displacement matrix [B] matrix for an	[10]	3	1
	Axisymmetric element			
8.	Evaluate the Jacobian matrix at the local co-ordinates ξ and η are (0, 0) for the Element shown in the below	[10]	4	5
	$\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$			
	OR			
9.	(a) Evaluate the shape functions for brick element using Lagrange Approach. (b) Evaluate the Integral $I = \int_{-1}^{1} (3e^x + x^2 + \frac{1}{(x+2)})$ using two point Gauss Quadrature method and compare this with exact solution	[10]	4	5
10.	(a) What is non linear analysis?	[10]	5	4
	(b) Distinguish between linear and non-linear approaches used in FEM.			
	OR			
11.	Explain different non-linear analysis with their limitations.	[10]	5	2

Course Outcomes:

- 1. Use minimum potential energy principle ad weighted residual methods in FiniteElement Method.
- 2. Analyse one dimensional elements like beam and truss element using FEM approach.
- 3. Evaluation of stress and strains in 2D CST and axi-symmetric elements.
- 4. Formulation of rectangular using Iso-parametric formulation, Three dimensional element and estimate the error using numerical methods
- 5. Differentiate various types of non-linear analysis

CODE:GRGR20D5012

GR

SET - 1

CO Mapping Table

	CO 1	CO 2	CO 3	CO 4	CO 5	Total
1 (a to j)	4	4	4	4	4	20
2a	5					5
2b	5					5
3	10					10
4		10				10
5		10				10
6a			5			5
6b			5			5
7a			5			5
7b			5			5
8				10		10
9a				5		5
9b				5		5
10a					5	5
10b					5	5
11					10	10
	24	24	24	24	24	70

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

M.Tech Structural Engineering I year-II Semester- GR20 A.Y.2021-22						
	FEM in Struc	tural Engineering (GR20D5012) (MID-I)				
S.No	Roll No	Maximum Marks (20 M)				
1	21241D2001	10				
2	21241D2002	15				
3	21241D2003	16				
4	21241D2004	13				
5	21241D2005	17				
6	21241D2006	17				
7	21241D2007	17				
8	21241D2008	11				
9	21241D2009	16				
10	21241D2010	09				
11	21241D2011	12				
12	21241D2012	15				
13	21241D2013	12				
14	21241D2014	12				
15	21241D2015	12				
16	21241D2016	15				
17	21241D2017	10				
18	21241D2018	AB				
19	21241D2019	AB				
20	21241D2020	10				
21	21241D2021	08				

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

	M.Tech Structural Engineering. I year-II Semester- GR20 A.Y.2021-22							
	FEM in Struct	tural Engineering (GR20D5012) (MID-II)						
S.No	Roll No	Maximum Marks (20 M)						
1	21241DD2001	14						
2	21241DD2002	17						
3	21241DD2003	15						
4	21241DD2004	11						
5	21241DD2005	17						
6	21241DD2006	08						
7	21241DD2007	17						
8	21241DD2008	13						
9	21241DD2009	17						
10	21241DD2010	12						
11	21241DD2011	11						
12	21241DD2012	13						
13	21241DD2013	10						
14	21241DD2014	14						
15	21241DD2015	14						
16	21241DD2016	13						
17	21241DD2017	09						
18	21241DD2018	AB						
19	21241DD2019	AB						
20	21241DD2020	10						
21	21241DD2021	11						

(Gried)

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year: 2021-22Semester: IIName of the Program: M.Tech (Structural Engineering)Course/Subject: FEM in Structural EngineeringName of the Faculty: Dr.GVV SatyanarayanaDesignation: PROFESSOR.

UNIT NO.: I Year: I Course Code: **GR20D5012** Dept.: Civil Engineering

		No. of		Objectives &	References
Lesson	Date	Periods	Topics / Sub - Topics	Outcomes	(Text Book, Journal)
No.				Nos.	Page Nos.:to
1.	11-04-2022	1	Introduction about FEM and	1 & 1	Introduction to Finite
			concepts of FEM		Element Method By
					Tirupathi Chandra Patla
	11-04-2022	1	History and applications of FEM	1 & 1	Finite Element Methods
2.					By Bhavikatti
	14-04-2022	1	Minimum Potential energy	1 & 1	
3.			principle		
	14-04-2022	1	Discuss on bar and spring	1 & 1	
4.			element		
	18-04-2022	1	Evaluation of stiffness matrix for	1 & 1	
5.			bar element using minimum		
			potential energy method		
	18-04-2022	1	Evaluation of stiffness matrix for	1 & 1	
6.			bar element using direct stiffness		
			method		
7.	21-04-2022	1	Assembly of global stiffness	1 & 1	
			matrices. Element strain & stress		
8.	21-04-2022	1	Evaluation of stresses and strains	1 & 1	
			in bar element		
9.	25-04-2022	1	Discuss on nodal equilibrium	1 & 1	
			equations		
10.	25-04-2022	1	Introduction about Method of	1 & 1	
			weighted Residual method		
11.	28-04-2022	1	Explain the various Method of	1 & 1	
			weighted Residual method		
12.	28-04-2022	1	Explain compatibility &	1 & 1	
			completeness requirements		
13.	02-05-2022	1	Polynomial forms and their	1 & 1	
			applications		
14.	02-05-2022			1 & 1	

Signature of HOD

Signature of faculty

Date:

Date:

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Semester

2021-22

: II

UNIT NO.: II

Year: I

Name of the Program: M.Tech (Structural Engineering)

Course/Subject: FEM in Structural Engineering

Course Code: GR20D5012

Dept.: Civil Engineering

Name of the Faculty: Dr.GVV Satyanarayana

Designation: PROFESSOR.

No. **Objectives &** References Outcomes Lesson Date Topics / Sub - Topics (Text Book, Journal...) of No. Peri Nos. Page Nos.: _____to _____ ods 05-05-2022 Derivation of stiffness matrix for 2 & 2 Introduction to Finite 1. 1 flexure element using minimum Element Method By Tirupathi Chandra Patla potential energy method 05-05-2022 1 Derivation of stiffness matrix for 2 & 2 Finite Element Methods flexure element using direct 2. By Bhavikatti stiffness approach method 09-05-2022 1 Evaluation of stresses in a flexure 2 & 2 3. element Evaluation of strains in a flexure 09-05-2022 1 2 & 2 4. element 12-05-2022 1 Derivation of stiffness matrix for 2 & 2 5. truss element Derivation of stresses and strains matrix for truss element 12-05-2022 Derivation of stresses and strains 2 & 2 1 6. matrix for truss element

Signature of HOD Date:

Signature of faculty Date:

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year: 2021-22Semester: IIName of the Program: M.Tech (Structural Engineering)Course/Subject: FEM in Structural EngineeringName of the Faculty: Dr.GVV SatyanarayanaDesignation: PROFESSOR.

UNIT NO.: III Year: I Course Code: **GR20D5012** Dept.: Civil Engineering

		No. of		Objectives &	References
Lesson	Date	Period	Topics / Sub - Topics	Outcomes	(Text Book, Journal)
No.		S		Nos.	Page Nos.:to
1.	16-05-2022	1	Introduction to Triangular element	3 & 3	Introduction to Finite
			using in FEM's		Element Method By
					Tirupathi Chandra Patla
	16-05-2022	1	Evaluation of stiffness matrix for a	3 & 3	Finite Element Methods
2.			triangular element		By Bhavikatti
	19-05-2022	1	Evaluate the stresses and strains	3 & 3	
3.			induced in triangular element		
	19-05-2022	1	Evaluate the forces, stresses and	3 & 3	
4.			strains induced in triangular		
			element		
	23-05-2022	1	Evaluate the forces, stresses and	3 & 3	
5.			strains induced in triangular		
			element		
	23-05-2022	1	Evaluation of stiffness matrix for a	3 & 3	
6.			cSt ement		
	26-05-2022	1	Evaluation of stiffness matrix for a	3&3	
7.			Axi-Symmetric element		
8.	26-05-2022	1	Evaluate the stresses and strains	3 & 3	
			induced in Axi-Symmetric element		
9.		1	Evaluate the stresses and strains	3 & 3	
			induced in Axi-Symmetric element		
10.	02-06-2022		Exercise problems		
11.	13-06-2022		Solve old question paper problems		
12.	13-06-2022		Solve old question paper problems		

Signature of HOD

Signature of faculty

Date:

Date:

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year: 2021-22Semester: IIName of the Program: M.Tech (Structural Engineering)Course/Subject: FEM in Structural EngineeringName of the Faculty: Dr.GVV SatyanarayanaDesignation: PROFESSOR.

UNIT NO.: IV Year: I Course Code: **GR20D5012** Dept.: Civil Engineering

		No. of		Objectives &	References
Lesson	Date	Periods	Topics / Sub - Topics	Outcomes	(Text Book, Journal)
No.				Nos.	Page Nos.:to
1.	16-06-2022	1	Unit-4 Explain Interpolation	4 & 4	Introduction to Finite
			elements		Element Method By
					Tirupathi Chandra Patla
	16-06-2022	1	Evaluate the stresses and strains	4 & 4	Finite Element Methods
2.			induced in rectangular element		By Bhavikatti
	20-06-2022	1	Evaluate the stresses and strains	4 & 4	
3.			induced in rectangular element		
4.	20-06-2022	1	Evaluate the forces, stresses and	4 & 4	
			strains induced in rectangular		
			element		
5.	23-06-2022	1	Evaluate the stresses and strains	4 & 4	
			induced in rectangular element		
6.	23-06-2022		Evaluate the forces, stresses and		
			strains induced in rectangular		
			element		
7.	27-06-2022		Evaluate the forces, stresses and		
			strains induced in three		
			dimensional element		
8.	26706-2022		Evaluation of stiffness matrix for a		
			three dimensional element		
9.	30-06-2022		Exercise problems		
10.	30-06-2022		Exercise problems		
11.	04-07-2022		Exercise problems		
12.	04-07-2022		Solve old question paper problems		
13.	07-07-2022		Solve old question paper problems		
14.	16-06-2022		Solve old question paper problems		
15.	11-07-2022		Explain Numerical integration		
			method used in FEM		
16.	11-07-2022		Explain Gauss quadrature method		
17.	14-07-2022		Estimate the error calculations		
			using Gauss quadrature method		

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year :

Semester

2021-22

: II

UNIT NO.: V

Name of the Program: M.Tech (Structural Engineering)

Course/Subject: FEM in Structural Engineering

Name of the Faculty: Dr.GVV Satyanarayana

Designation: PROFESSOR.

Objectives & References No. of Lesson Date Periods Topics / Sub - Topics Outcomes (Text Book, Journal...) Page Nos.:___ No. Nos. to 14-07-2022 Introduction to Finite Unit-5 Introduction in Non-linear 5&5 1. 1 analysis used in FEM Element Method By Tirupathi Chandra Patla 18-07-2022 Finite Element Methods 1 Differentiate between various non-5 & 5 2. linear analysis By Bhavikatti 18-07-2022 1 Differentiate between various non-5 & 5 3. linear analysis 21-07-2022 1 Explain the importance of non-5 & 5 4. linear analysis 21-07-2022 5. Explain the importance of non-1 5 & 5 linear analysis 25-07-2022 Explain Numerical integration 1 5 & 5 6. method used in FEM

Signature of HOD Date:

Signature of faculty Date:

Course Code: GR20D5012

Dept.: Civil Engineering

Year: I

COURSE COMPLETION STATUS

-Academic Year : 2021-22

Semester : II

Name of the Program: M.Tech (Structural Engineering)

Course/Subject: FEM in Structural Engineering

Course Code: GR20D5012

Year: I

Name of the Faculty: Dr. <u>GVV Satyanarayana</u> Dept.: <u>Civil Engineering</u>

Designation: PROFESSOR

Actual Date of Completion & Remarks, if any

Units	Remarks	No. of Objectives Achieved	No. of Outcomes Achieved
Unit 1	Introduction of FEM	1	1
Unit 2	Beam and Truss elements	2	2
Unit 3	Types: Triangular and axisymmetric elements	3	3
Unit 4	Iso-parametric formulation and Rectangular elements	4	4
Unit 5	Non-linear analysis	5	5

Signature of HOD

Signature of faculty

Date:

Date:

Note: After the completion of each unit mention the number of Objectives & Outcomes Achieved.

I M.TechII Semester Regular Examinations, September 2022

FEM IN STRUCTURAL ENGINEERING

(Civil Engineering)

Time: 3 hours

Max Marks: 70

Instructions:

- 1. Question paper comprises of Part-A and Part-B
- 2. Part-A (for 20 marks) must be answered at one place in the answer book.
- 3. Part-B (for 50 marks) consists of five questions with internal choice, answer all questions.

PART – A (Answer ALL questions. All questions carry equal marks) 10 * 2 = 20 Marks

1. a.	Explain briefly about the concept of weighted residual method	[2]	1	2
b.	Mention the basic steps involved in Galerkin's method.	[2]	1	2
c.	Define natural co-ordinate systems	[2]	2	2
d.	Write stiffness matrix of beam element.	[2]	2	1
e.	What do you mean by axisymmetric elements?	[2]	3	1
f.	Define plain strain with suitable example	[2]	3	2
g.	What are the different Isoparametric elements?	[2]	4	1
h.	Discuss briefly on Gauss quadrature method.	[2]	4	2
i.	Discuss the basic concept of non-linear analysis	[2]	5	2
j.	What is non-linear analysis?	[2]	5	1
	(Answer ALL questions. All questions carry equal marks) 5 * 10 = 50 Marks			
2.	 a) Find the solution of the problem using Rayleigh Ritz method by considering two term solutions as y(x) C₁(1-x) + C₂ x²(1-x) b) What are the steps involved in Finite Element Method. Define of Freedom and principle of virtual work 	[10]	1	1
	OR			
3.	a) Illustrate the concept of element strain and stress. Distinguish between the problems of 'Plane stress' and 'Plane strain'b) Write short note on Galerkin's method in FEA. List some disadvantages of using 3-D elements.	[10]	1	3
4.	Calculate the transverse displacement at the free end of the cantilever stepped beams shown in figure.	[10]	2	4

GR20D5012				GR)	SE	T - 1	
	Write the procedure to solve this problem using finite element software?							
	10.	 10. a) Distinguish between linear and non linear approaches used in FEM. b) Describe Newton-Raphson technique for solving material non-linearity problems. 				[10]	5	4
	OR							
	11.	a) Explain different non- b) List some disadvantag	linear analysis wi es of using 3-D el	ith their li lements.	mitations.	[10]	5	2

Course Outcomes:

- 1. Use minimum potential energy principle ad weighted residual methods in FiniteElement Method.
 - 2. Analyse one dimensional elements like beam and truss element using FEM approach.
 - 3. Evaluation of stress and strains in 2D CST and axi-symmetric elements.
 - 4. Formulation of rectangular using Iso-parametric formulation, Three dimensional element and estimate the error using numerical methods
- 5. Differentiate various types of non-linear analysis

CO Mapping Table

	CO 1	CO 2	CO 3	CO 4	CO 5	Total
1 (a to j)	4	4	4	4	4	20
2 a,b	10					10
3 a,b	10					10
4		10				10
5 a		05				05
b			05			05
6 a, b			10			10
7			10			10
8				10		10
9				10		10
10 a, b					10	10
11 a, b					10	10
	24	19	29	24	24	70

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF CIVIL ENGINEERING (2016-17)

Subject: FEM in Structural Engineering

Class: M.Tech., I/II (Section - A)

Name : Dr.G V V SATYANARAYANA

Sub Code: GR20D5012

S.No	Date`	Unit	Session	Topics		
		No	Duration			
1.	11-04-2022			Introduction about FEM and concepts of FEM		
2.	11-04-2022			History and applications of FEM		
3.	14-04-2022			Minimum Potential energy principle		
4.	14-04-2022		Discuss on bar and spring element			
5.	18-04-2022			Evaluation of stiffness matrix for bar element using		
				minimum potential energy method		
6.	18-04-2022			Evaluation of stiffness matrix for bar element using direct		
				stiffness method		
7.	21-04-2022	Ι		Assembly of global stiffness matrices. Element strain &		
-	01.04.0000			stress		
8.	21-04-2022			Evaluation of stresses and strains in bar element		
9.	25-04-2022			Discuss on nodal equilibrium equations		
10.	25-04-2022			Introduction about Method of weighted Residual method		
11.	28-04-2022			Explain the various Method of weighted Residual method		
12.	28-04-2022			Explain compatibility & completeness requirements		
13.	02-05-2022			Polynomial forms and their applications		
14.	02-05-2022			One dimensional FEM Introduction about 1-D		
				element		
15.	05-05-2022			Derivation of stiffness matrix for flexure element using		
				minimum potential energy method		
16.	05-05-2022			Derivation of stiffness matrix for flexure element using		
	00.05.0000			direct stiffness approach method		
17.	09-05-2022	II		Evaluation of stresses in a flexure element		
18.	09-05-2022			Evaluation of strains in a flexure element		
19.	12-05-2022			Derivation of stiffness matrix for truss element		
				Derivation of stresses and strains matrix for truss element		
20.	12-05-2022			Derivation of stresses and strains matrix for truss element		
21.	16-05-2022			Introduction to Triangular element using in FEM's		
22.	16-05-2022			Evaluation of stiffness matrix for a triangular element		
23.	19-05-2022			Evaluate the stresses and strains induced in triangular		
	10.05.0005			element		
24.	19-05-2022			Evaluate the forces, stresses and strains induced in		
25	22.05.2022			triangular element		
25.	25-05-2022	111	Evaluate the forces, stresses and strains induced in			
26	22.05.2022			Evaluation of stiffness matrix for a set amont		
26.	25-05-2022		Evaluation of stiffness matrix for a CSt ement			
27.	20-05-2022		Evaluation of stiffness matrix for a Axi-Symmetric			
20	26-05 2022			Evaluate the attraction and attrains induced in Avi		
20.	20-05-2022			Symmetric element		
20	02-06-2022			Evaluate the stresses and strains induced in Avi-		
29.	02-00-2022	l				

			Symmetric element
30.	02-06-2022		Exercise problems
31.	13-06-2022		Solve old question paper problems
32.	13-06-2022		Solve old question paper problems
33.	16-06-2022		Unit-4 Explain Interpolation elements
34.	16-06-2022		Evaluate the stresses and strains induced in rectangular
			element
35.	20-06-2022		Evaluate the stresses and strains induced in rectangular element
36.	20-06-2022		Evaluate the forces, stresses and strains induced in rectangular element
37.	23-06-2022		Evaluate the stresses and strains induced in rectangular element
38.	23-06-2022		Evaluate the forces, stresses and strains induced in rectangular element
39.	27-06-2022		Evaluate the forces, stresses and strains induced in three dimensional element
40.	26706-	IV	Evaluation of stiffness matrix for a three dimensional
	2022		element
41.	30-06-2022		Exercise problems
42.	30-06-2022		Exercise problems
43	04-07-2022		Exercise problems
44.	04-07-2022		Solve old question paper problems
45.	07-07-2022		Solve old question paper problems
46.	16-06-2022		Solve old question paper problems
47.	11-07-2022		Explain Numerical integration method used in FEM
48.	11-07-2022		Explain Gauss quadrature method
49.	14-07-2022		Estimate the error calculations using Gauss quadrature method
50.	14-07-2022		Unit-5 Introduction in Non-linear analysis used in FEM
51.	18-07-2022		Differentiate between various non-linear analysis
52.	18-07-2022	V	Differentiate between various non-linear analysis
53.	21-07-2022	v	Explain the importance of non-linear analysis
54.	21-07-2022		Explain the importance of non-linear analysis
55.	25-07-2022		Explain Numerical integration method used in FEM
56.	25-07-2022		Revision in unit-1
57.	28-07-2022		Revision in unit-2
58.	28-07-2022		Revision in unit-3
59.	01-08-2022		Revision in unit-4
60.	01-08-2022		Revision in unit-5

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Department of Civil Engineering I M.Tech. II Semester MID I EXAMINATION March--2022 FEM in Structural Engineering (GR20D5012)

Time: 75 Minutes Max.Marks: 15 Marks Date of examination 06-06-2022

3x5=15 Marks

Name : RollNo.			D	
Answer all questio	ns. 4 P			
	И	COs	BLs	PIs
1. a. Explain the History of Finite Element Method	2	1	2	1.1.1
b. Interpret the displacement, stress and strains in the bar as shown figure below:	3	1	2	3.4.1
500 N 1 = 1000 mm, a= 100 sq mm & E = 200 GPa				
OR				
c. Consider the differential equation for a	5	1	2	3.4.2
problem such that, $\frac{d^2y}{dx^2} + 300 x^2 = 0$.				
with the boundary conditions $v(0) = 0$				
and $y(l) = 0$ compare four weight residual				
methods				
2. Analyse given structure is shown in Fig. below	5	2	4	5.3.1
Take, $E = 200 \text{ G Pa}$ and $I = 4 \times 10^{-6} \text{ m}^4$				
Alter to the the the terms of te				
OR				
b. Analyse given structure is shown in Fig. below	5	2	4	5.3.1
All members with $E = 210$ GPa.				

$A = 20 \text{ cm}^{2}$ $A = 500 \text{ cm}$ $A = 500 \text{ cm}$				
3. a. What is CST element?	2	3	1	3.2.1
b . Compare between CST ad LST elements	3	3	5	3.2.1
c What are the properties of stiffness matrix?	2	3	1	3.2.1
d . Compare between Plane stress and plane with suitable examples	3	3	5	3.2.1

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Department of Civil Engineering I M.Tech. II Semester MID I EXAMINATION March--2022

Finite Element Methods in Structural Engineering (GR20D5012)

Time: 15 Minutes Max.Marks: 5 Marks Date of examination 06-06--2022

 $10x\frac{1}{2}=5$ Marks

Name :	Roll No.	D		
1. What is N_2 , when N_1 is 0.3			[]
a) 0 b) -1	c) 0.8	d) 0.7		
2. The potential energy is equal to	as per Ra	yleigh method	[]
a) Minimum b) Maximum	c) 0	d) ∝		
3. As per stiffness matrix the co-efficier	nt of $k_{ii} =$		[]
a) \mathbf{k}_{ij} b) \mathbf{k}_{ji}	c) f _{ij}	d) f _{ji}	-	-
4 The size of stiffness matrix depends	on		Г	1
a) Support reactions b) dof c) type	e of loading d) Geor	netric properties of	struc	ture
5. Stiffness of truss element is equals to)	4.5	[]
a) $\frac{EI}{l^2}$ b) $\frac{EI}{l^3}$	c) $\frac{P}{\delta}$	d) $\frac{AE}{l}$		
6. The beam element belongs to			ſ	1
a) 1-D element b) 2-D element	c) 3-D element	d) Either A or B	-	-
7. Stiffness of beam element is equals t	0			
a) $\frac{EI}{1^2}$ b) $\frac{EI}{1^3}$ c	$\frac{12 EI}{I^3}$	d) $\frac{4 \text{ EI}}{l}$		
		L	r	7
8. What is dof for each node in a beam $(x,y) = (x,y)$	element	1) 2	L]
a) 0 b) 1 c) 2	d) 3		
9. In Point collocation method the resid	ual is equals to	-	[]
a) 0 b) 1 c) 2	d) \propto		
10. The size of stiffness matrix for CST	element is equals to_		[]
a) 2 X 2 b) 3 X 3 c)) 6 X 6	d) 12 X 12		

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Department of Civil Engineering

I M.Tech. II Semester MID II EXAMINATIONAugust 2022

FEM in Structural Engineering (GR20D5012)

Time: 75 Minutes

Date of examination 16-08-2022

Max.Marks: 15 Marks 3x5=15 Marks

Answer all questions

Name : _____

	 -		 		
Roll No.			D		

	Par	t-B			
		Μ	COs	BLs	PIs
1.	a) Evaluate Stiffness matrix for the two dimensional plate as shown below: $ \begin{array}{r} $	5 2N	3	5	3.2.1
	OR				
	c) Calculate the element stresses for the Axisymmetric element as shown in figure. The Nodal displacements are as follows: $u_1 = 0.01 \text{ mm}; v_1 = 0.02 \text{ mm};$ $u_2 = 0.03 \text{ mm}; v_2 = 0.05 \text{ mm};$ $u_3 = -0.01 \text{ mm}; v_3 = 0.03 \text{ mm};$ Z (30, 20) (30, 50) r	5	3	5	3.2.1
2	a) Compare between different Isoparametric elements.	2	4	5	3.2.1
	b) For the four noded quadrilateral element shown in figure. Determine the Jacobian matrix and evaluate the point (0.5, 0.5)	3	4	5	3.2.1

	Y (50, 80) (20, 50) (25, 10) (80, 30) X				
	OR				
	c) Evaluate the Integral given below:	5	4	5	5.1.2
	$I = \int_{-1}^{1} (3 e^{x} + x^{2} + \frac{1}{(x+2)}) dx$				
	Using onne and two point Gauss				
	Quadrature method. Also compar ths with				
	exact solution.				
3	a) Distinguish between the various methods of non-linearity.	5	5	4	5.3.2
	OR				
	b) Explain different method in non-linear analysis.	5	5	4	5.3.2

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Department of Civil Engineering

I M.Tech. II Semester MID II EXAMINATION August 2022

FEM in Structural Engineering (GR20D5012)

Time: 15 Minutes	Date of examinatio Answer all questions	Max.Marks: 15 Mark 10 $X\frac{1}{2} = 5$ Mark			
Name :	Roll No.		D		
		Part-A			
Choose the correct answers.	r for a LCT alamant is			г	1
1. The size of summess matrix A > 3 X3	B) 6 X 6	$C > 0 \times 0$	D) 12 X 12	L]
\mathbf{A}) \mathbf{J} $\mathbf{A}\mathbf{J}$	\mathbf{D} $\mathbf{O} \mathbf{A} \mathbf{O}$	C) 9 A 9	$D) 12 \times 12$		
2. The value of 2A in a CST	element equals to			ſ	1
A) <i>C</i>	B) B	C) D	D) <i>K</i>	-	-
3. Strain-displacement matrix	x also known as			[]
A) B Matrix	B) C Matrix	C) D Matrix	D) G Matrix		
Λ The value γ equals to				Г	1
4. The value γ_3 equals to				L	1
<i>A</i>) <i>x</i> ₃₁	B) <i>x</i> ₂₁	<i>C</i>) <i>x</i> ₂₃	D) <i>y</i> ₃₁		
5. In Axi-symmetric element	the Circumferential strain	also known as		[]
A) Tangential strain	B) Radial strain	C) Axial Strain	D) Shear strain		
6 In master element the sides	s are			ſ	1
A) Curved and straight	B) Straight and Sharp	C) Curved only	D) straight only	L	-
7 In Issahian matrix I				г	1
7. In Jacobian matrix $J_{21} =$	\mathbf{p} ∂v	O ∂u	\mathbf{D} $\frac{\partial v}{\partial v}$	L]
A) $\frac{1}{\partial \xi}$	B) $\frac{\partial \xi}{\partial \xi}$	$C)\frac{1}{\partial \eta}$	D) $\frac{\partial \eta}{\partial \eta}$		
8 The B-matrix in a four nod	ed rectangular element is			ſ	1
A) G X H	B) D X H	C) K X H	D) C X H	L	1
,	,	,	,		
9. In Linear Analysis the mate	erials obey's law	W C) He also	D) D	[]
A) Pascal	B) Newton	C) HOOKS	D) Bernoulli		
10. In case two point problem	s the Gaussian weights are	· ,		[]
A) 1.0, 2.0	B) 1.0, 1.0	C) 2.0, 1.0	D) 1.0 or 2.0		

LESSON PLAN

Academic Year	: 2021-2	22		Date: 11-04-2022	
Semester	: II	Unit – I Introdu	iction to	o Finite Element metho	ds
Name of the Program: M.Tech	(Structural	Engineering)		Year: I	
Course/Subject: FEM in Struct	ural Engi	neering	Course	Code: GR20D5012	
Name of the Faculty: Dr.GVV S	Satyanaray	ana.		Dept.: Civil Engineering	5
Designation: PROFESSOR					
Lesson No: 1				Duration of Lesson: <u>1h</u>	<u>r</u>
Lesson Title: Introduction about 1	FEM and c	oncepts of FEM			
INSTRUCTIONAL/LESSON	DBJECTIV	<u>'ES:</u>			
On completion of this lesson the	e student s	hall be able to:			
 Understand the concepts of F List out steps involved in FEI Discretization of structure 	EM. M.				

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

- Definition of FEM
- Differentiate between FEM and analytical methods.
- Different types of analysis methods

Assignment / Questions: (1 & 1) 1. What is basic concept of FEM?

(1 & 1) 2. Explain steps involved in FEM with suitable example.

Signature of faculty

LESSON PLAN

Academic Year	: 2021-2	22	Date: 11-04-2022	
Semester	: II	Unit – I Introdu	action to Finite Element methods	
Name of the Program: M.Tech (Structural	Engineering)	Year: I	
Course/Subject: FEM in Struct	ural Engi	ineering	Course Code: GR20D5012	
Name of the Faculty: Dr.GVV S	atyanaray	ana.	Dept.: Civil Engineering	
Designation: PROFESSOR				
Lesson No: 2			Duration of Lesson: <u>1hr</u>	
Lesson Title: History and applicat	ions of FE	ĽΜ		
INSTRUCTIONAL/LESSON C	BJECTIV	VES:		
On completion of this lesson the	student s	shall be able to:		
 Understand about back ground or History of FEM Understand the applications of FEM in various fields 				
TEACHING AIDS : white TEACHING POINTS : • Explain the History of	board, D	ifferent colour ma	arkers	

List out various uses of FEM

Assignment / Questions: (1 & 1) 1. What is basic history of FEM? (1 & 1) 2. Explain the usage of FEM in various fields.

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22		Date: 14-04-2022	
Semester	: П	Unit – I Intro	duction to Finite Element methods	
Name of the Program: M.Tech Course/Subject: FEM in Struc	(Structural Engin tural Engineeri	neering) Ye ing Course C	ar: I lode: GR20D5012	
Name of the Faculty: Dr.GVV	Satyanarayana.		Dept.: Civil Engineering	
Designation: PROFESSOR				
Lesson No: 3			Duration of Lesson: <u>1hr</u>	
Lesson Title: Minimum Potentia	l energy principle			
INSTRUCTIONAL/LESSON	OBJECTIVES:			
On completion of this lesson th	e student shall b	be able to:		
 Understand the Minimum Potential energy principles in FEM Understand various Minimum Potential energy principle in FEM 				
TEACHING AIDS : white board, Different colour markers TEACHING POINTS :				
Role of Minimum Po Discuss on Rayleigh I	tential energy prin Ritz theorem	ciple in FEM		

Assignment / Questions: (1 & 1) 1. What is minimum energy principle in FEM? (1 & 1) 2. Explain in detail Rayleigh Ritz theorem

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 14-04-2022			
Semester	: II Unit – I In	ntroduction to Finite Element methods			
Name of the Program: M.T	ech(Structural Engineering)	Year: I			
Course/Subject: FEM in S	tructural Engineering	Course Code: GR20D5012			
Name of the Faculty:.Dr.GV	/V Satyanarayana.	Dept.: Civil Engineering			
Designation: PROFESSOR					
Lesson No: 4		Duration of Lesson: <u>1hr</u>			
Lesson Title: Discuss on bar	and spring element				
INSTRUCTIONAL/LESSO	N OBJECTIVES:				
On completion of this lesso	n the student shall be able to):			
1. Understand about stiffness of a spring.					
2. Understand the concept of equivalent stiffness when springs are parallel and series.					
TEACHING AIDS : white board, Different colour markers TEACHING POINTS :					

- Role of stiffness in FEM.
- Determine equivalent stiffness when springs are parallel and series.

Assignment / Questions: (1 & 1) 1. What is usage stiffness concept in FEM?.

(1 & 1) 2. Evaluate the equivalent stiffness when springs are parallel and series.

Signature of faculty

TEACHING POINTS

:

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22		Date: 18-04-2022	
Semester	: II	Unit — I Introduc	tion to Finite Element metl	nods
Name of the Program: M.Tech (Structural I	Engineering)	Year: I	
Course/Subject: FEM in Structu	ıral Engin	eering Co	urse Code: GR20D5012	
Name of the Faculty: Dr.GVV S	atyanarayar	na.	Dept.: Civil Engineering	
Designation: PROFESSOR				
Lesson No: 5			Duration of Lesson: <u>1hr</u>	• -
Lesson Title: Evaluation of stiffne	ss matrix fo	r bar element using n	ninimum potential energy metho	od
INSTRUCTIONAL/LESSON OBJECTIVES:				
On completion of this lesson the student shall be able to:				
1. How to evaluate the stiffness matrix for bar element using minimum potential energy method				
TEACHING AIDS : white board, Different colour markers				

• How to derive the stiffness matrix for bar element using minimum potential energy method

Assignment / Questions: (1 & 1) 1. Explain the procedure in evaluation of stiffness matrix for bar element using minimum potential energy method.

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 18-04-2022		
Semester	: 11	Unit – I Introduction to Finite Element methods		
Name of the Program: M.Tech (Structural Engineering) Year: I				
Course/Subject: FEM in Structural Engineering Course Code: GR20D5012				
Name of the Faculty: Dr.GVV S	Satyanarayana.	Dept.: Civil Engineering		
Designation: PROFESSOR				
Lesson No: 6		Duration of Lesson: <u>1hr</u>		
Lesson Title: Evaluation of stiffness matrix for bar element using minimum direct stiffness method				
INSTRUCTIONAL/LESSON (DBJECTIVES:			
On completion of this lesson the student shall be able to:				

1. Understand the procedure in Evaluation of stiffness matrix for bar element using minimum direct stiffness method

TEACHING AIDS: white board, Different colour markersTEACHING POINTS:

• Explain the procedure in evaluation of stiffness matrix for bar element using minimum direct stiffness method

Assignment / Questions: (1 & 1) 1. How to evaluate the stiffness matrix for bar element using minimum direct stiffness method

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 21-04-2022
Semester	: II	Unit – I Introduction to Finite Element methods
Name of the Program: N	1.Tech (Structural Engineeri	ing) Year: II
Course/Subject: FEM ir	Structural Engineering	Course Code: GR20D5012
Name of the Faculty: Dr	.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFESS	OR	
Lesson No: 7		Duration of Lesson: <u>1hr</u>
Lesson Title: Evaluation	of stresses and strains in bar e	lement
INSTRUCTIONAL/LES	SON OBJECTIVES:	
On completion of this lea	sson the student shall be ab	le to:
1. Understand the proceed 2. Understand the proceed	dure in evaluation of individu dure in assembly of global sti	al matrices. ffness matrices.
TEACHING AIDS TEACHING POINTS	: white board, Different co	olour markers
 Explain the pr Explain the pr 	ocedure in evaluation of incocedure in evaluation of asser	lividual matrices. mbly of global stiffness matrices from individual
matrices.		

Assignment / Questions: (1 & 1) 1. How to evaluate individual and global stiffness matrices.

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date:
Semester	: II	Unit – I Introduction to Finite Element methods
Name of the Program: M	Tech (Structural Engineeri	ng) Year: II
Course/Subject: FEM in	Structural Engineering	Course Code: GR20D5012
Name of the Faculty: Dr.	GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFESSO	DR	
Lesson No: 8		Duration of Lesson: <u>1hr</u>
Lesson Title: Evaluation of	of stresses and strains in bar e	lement
INSTRUCTIONAL/LESS	SON OBJECTIVES:	
On completion of this les	son the student shall be ab	le to:
1. Understand the proced	ure in evaluation of stresses	and strains in bar element
TEACHING AIDS TEACHING POINTS	: white board, Different co	olour markers
Ex[lain the pro	cedure in evaluation of stress	ses and strains in bar element

Assignment / Questions: (1 & 1) 1. How to evaluate the stresses and strains in bar element

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 25-04-2022
Semester	: II	Unit – I Introduction to Finite Element methods
Name of the Program: N	1.Tech (Structural Engine	eering) Year: I
Course/Subject:FEM in	Structural Engineering	g Course Code: GR20D5012
Name of the Faculty:Dr.	GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFESS	OR	
Lesson No: 9		Duration of Lesson: <u>1hr</u>
Lesson Title: Discuss on	nodal equilibrium equation	18
INSTRUCTIONAL/LES	SON OBJECTIVES:	
On completion of this les	sson the student shall be	able to:
1. Understand how to so	lve the nodal equilibrium	equations
TEACHING AIDS TEACHING POINTS	: white board, Different	colour markers
Derive the no Stiffness mate	dal equilibrium equations	using general stiffness relationship
 Explain the methodology to evaluate the stiffness matrix in another method to a one dimensional element. 		

Assignment / Questions: (1 & 1) 1. What is the procedure to prepare stiffness matrix for one dimensional Element?

(1 & 1) 2. What are the properties of stiffness matrix?

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 25-04-2022
Semester	: 11	Unit – I Introduction to Finite Element methods
Name of the Program: M	Tech (Structural Engineeri	ing) Year: I
Course/Subject: FEM in	Structural Engineering	Course Code: GR20D5012
Name of the Faculty: Dr.	GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFESSO	DR	
Lesson No: 10		Duration of Lesson: <u>1hr</u>
Lesson Title: Introduction	about Method of weighted R	Residual method
INSTRUCTIONAL/LES	SON OBJECTIVES:	
On completion of this les	son the student shall be ab	le to:
1. Understood the import	ance of weighted Residual n	nethods in FEM.
TEACHING AIDS TEACHING POINTS	: white board, Different co	blour markers
Introduction or	Method of weighted Residuated	al methods used in FEM

Assignment / Questions: (1 & 1) 1. Explain the role of weight residual methods in FEM.

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 28-04-2022
Semester	: П	Unit – I Introduction to Finite Element methods
Name of the Program: M	I.Tech (Structural Engineerin	ng) Year: I
Course/Subject: FEM in	Structural Engineering	Course Code: GR20D5012
Name of the Faculty: Dr	GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFESS	DR	
Lesson No: 11		Duration of Lesson: <u>1hr</u>
Lesson Title: Explain the .	various weighted Residual me	thod
INSTRUCTIONAL/LES	SON OBJECTIVES:	
On completion of this less	son the student shall be able	e to:
1. Understood the various	s weighted Residual methods	in FEM.
TEACHING AIDS TEACHING POINTS	: white board, Different col	our markers
Various metho	ds of weighted Residual metho	bds used in FEM

Assignment / Questions: (1 & 1) 1. Explain the various weight residual methods in FEM.

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 28-04-2022
Semester	: II	Unit – I Introduction to Finite Element methods
Name of the Program: N	I.Tech (Structural Enginee	ering) Year: I
Course/Subject: FEM in	Structural Engineering	Course Code: GR20D5012
Name of the Faculty: Dr	.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFESS	SOR	
Lesson No: 12		Duration of Lesson: <u>1hr</u>
Lesson Title: Explain cor	npatibility & completeness	requirements
INSTRUCTIONAL/LES	SON OBJECTIVES:	
On completion of this les	sson the student shall be a	able to:
 Understood the compa Understood completen 	ntibility conditions used in ess requirements for FEM	n FEM.
TEACHING AIDS TEACHING POINTS	: white board, Different	colour markers
Discuss on va	trious compatibility condi	tions used in FEM.

• Explain on completeness requirements for FEM

Assignment / Questions:(1 & 1) 1. What are the different compatibility conditions used in FEM? (1 & 1) 2. Explain briefly on completeness requirements for FEM

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 02-05-2022	
Semester	: 11	Unit – I Introduction to Finite Element methods	
Name of the Program: M.Tech (Structural Engineeri	ng) Year: I	
Course/Subject: FEM in Structur	al Engineering	Course Code: GR20D5012	
Name of the Faculty: Dr.GVV S	atyanarayana.	Dept.: Civil Engineering	
Designation: PROFESSOR			
Lesson No: 13		Duration of Lesson: <u>1hr</u>	
Lesson Title: Polynomial forms and their applications			
INSTRUCTIONAL/LESSON OBJECTIVES:			
On completion of this lesson the student shall be able to:			
1. Understood different Polynomial forms and their applications in FEM			
TEACHING AIDS : white board, Different colour markers			

TEACHING POINTS :

• Discuss on different polynomial forms and their applications used in FEM.

Assignment / Questions: (1 & 1) 1. Explain the different Polynomial forms and their applications used FEM

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22			Date: 02-05-2022
Semester	: II	Unit – I	Introduction	to Finite Element methods
Name of the Program: M	Tech (Structural Eng	ineering)	Year: I	
Course/Subject: FEM in S	Structural Engineering	g Cou	urse Code: G	R20D5012
Name of the Faculty: Dr.	GVV Satyanarayana.			Dept.: Civil Engineering
Designation: PROFESS	OR			
Lesson No: 14			Du	ration of Lesson: <u>1hr</u>
Lesson Title: One dimensional FEM Introduction about 1-D element				
INSTRUCTIONAL/LESS	ON OBJECTIVES:			
On completion of this lesson the student shall be able to:				
1. Understood various one dimensional 1-D elements in FEM				
TEACHING AIDS	: white board, Differe	nt colour r	narkers	
		Dalamanta		
 Analyse variot 	is one dimensional 1	-Deenenus		

Assignment / Questions: (1 & 1) 1. Explain the various one dimensional 1-D elements in FEM used FE

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 05-05-2022	
Semester	: II	Unit- II Beam and Truss Elements	
Name of the Program: 1	M.Tech (Structural Engineering	g) Year: I	
Course/Subject: FEM in	Structural Engineering	Course Code: GR20D5012	
Name of the Faculty: D	r.GVV Satyanarayana.	Dept.: Civil Engineering	
Designation: PROFES	SOR		
Lesson No: 15		Duration of Lesson: <u>1hr</u>	
Lesson Title: Derivation	of stiffness matrix for flexure el	ement using minimum potential energy method	
INSTRUCTIONAL/LESSON OBJECTIVES:			
On completion of this lesson the student shall be able to:			
1. Evaluate the stiffness matrix for flexure element using minimum potential energy method			

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Explain the procedure in derivation of stiffness matrix for flexure element using minimum potential energy method

Assignment / Questions: (2 & 2) 1. Evaluate the stiffness matrix for flexure element using minimum potential energy method

Signature of faculty

LESSON PLAN

Academic	Year	: 2021-22	Date: 05-05-2022
Semester		: 11	Unit- II Beam and Truss Elements
Name of t	he Program: M.Tech (S	Structural Engineering	y) Year: I
Course/Su	bject: FEM in Structur	al Engineering	Course Code: GR20D5012
Name of t	he Faculty: Dr.GVV S	atyanarayana.	Dept.: Civil Engineering
Designatio	n: PROFESSOR		
Lesson No	o: 16		Duration of Lesson: <u>1hr</u>
Lesson Title: Derivation of stiffness matrix for flexure element using direct stiffness approach method			
<u>INSTRUC</u>	TIONAL/LESSON O	BJECTIVES:	
On completion of this lesson the student shall be able to:			
1. Evaluate Derivation of stiffness matrix for flexure element using direct stiffness approach method			
FEACHING AIDS : white board, Different colour markers			

TEACHING POINTS

• Derivation of stiffness matrix for flexure element using direct stiffness approach method

Assignment / Questions: (2& 2) 1. Evaluate Derivation of stiffness matrix for flexure element using direct stiffness approach method

Signature of faculty

LESSON PLAN

Academic Y	Year : 2021-22	Date: 09-05-2022	
Semester	: II	Unit- II Beam and Truss Elements	
Name of the	Program: M.Tech (Structural Engineering	g) Year: I	
Course/Subje	ect: FEM in Structural Engineering	Course Code: GR20D5012	
Name of the	Faculty: Dr.GVV Satyanarayana.	Dept.: Civil Engineering	
Designation:	PROFESSOR		
Lesson No:	: 17	Duration of Lesson: <u>1hr</u>	
Lesson Title:	Evaluation of stresses in a flexure element		
INSTRUCTIONAL/LESSON OBJECTIVES:			
On completion	on of this lesson the student shall be able	to:	
1. Understand the procedure in calculation of stresses in a flexure element			
TEACHING AIDS : white board, Different colour markers			

TEACHING POINTS :

• Explain the procedure in evaluation of stresses in a flexure element

Assignment / Questions: (2 & 2) 1. Evaluate the stresses in a flexure element.

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 09-05-2022
Semester	: II	Unit- II Beam and Truss Elements
Name of the Program: N	A.Tech (Structural Engineering	g) Year: I
Course/Subject: FEM in	Structural Engineering	Course Code: GR20D5012
Name of the Faculty: D	r.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFES	SOR	
Lesson No: 18		Duration of Lesson: <u>1hr</u>
Lesson Title: Evaluation	of strains in a flexure element	
INSTRUCTIONAL/LES	SON OBJECTIVES:	
On completion of this le	sson the student shall be able	to:
1. Understand the s	steps used in calculation of Ev	aluation of strains in a flexure element
TEACHING AIDS TEACHING POINTS	: white board, Different cold	ur markers
• Explain the pr	ocedure in evaluation of strains	in a flexure element

Assignment / Questions: (2 & 2) 1. Determine the strains in a flexure element.

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 12-05-2022
Semester	: II	Unit- II Beam and Truss Elements
Name of the Program: 1	M.Tech (Structural Engineering)	Year: I
Course/Subject: FEM ir	Structural Engineering	Course Code: GR20D5012
Name of the Faculty: D	r.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFES	SOR	
Lesson No: 19		Duration of Lesson: <u>1hr</u>
Lesson Title: Derivation	of stiffness matrix for truss elemen	t
INSTRUCTIONAL/LES	SSON OBJECTIVES:	
On completion of this k	esson the student shall be able to	:
1. Understand in e	valuation in derivation of stiffness	matrix for truss element
TEACHING AIDS TEACHING POINTS	: white board, Different cold	our markers
Derivation of	stiffness matrix for truss element	

Questions: (2 & 2) 1. Derive stiffness matrix for truss element

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 12-05-2022
Semester	: 11	Unit- II Beam and Truss Elements

Name of the Program: M.Tech (Structural Engineering)) Year: I
Course/Subject: FEM in Structural Engineering	Course Code: GR20D5012
Name of the Faculty: Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFESSOR	
Lesson No: 20	Duration of Lesson: <u>1hr</u>
Lesson Title: Derivation of stresses and strains matrix for	truss element
INSTRUCTIONAL/LESSON OBJECTIVES:	
On completion of this lesson the student shall be able t	0:
1. Understand the procedure in evaluation of stres	ses and strains matrix for truss element
TEACHING AIDS : white board, Different colour n TEACHING POINTS :	narkers

• Explain the procedure in evaluation of stresses and strains matrix for truss element

Assignment / Questions: (2 & 2) 1. Derive the stresses and strains matrix for truss element

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 16-05-2022
Semester Name of the Program: N	: II I.Tech (Structural Engineer	Unit-III Triangular & Axisymmetric Elements ring) Year: I
Course/Subject: FEM in	Structural Engineering	Course Code: GR20D5012
Name of the Faculty: Dr	.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFESS	SOR	
Lesson No: 21		Duration of Lesson: <u>1hr</u>
Lesson Title: Introduction	to Triangular element using	g in FEM's
INSTRUCTIONAL/LES On completion of this les	SON OBJECTIVES: sson the student shall be a	ble to:
 Know about the C Applications of T 	ST and LST elements riangular element using in Fl	EM's
TEACHING AIDS TEACHING POINTS	: white board, Different c :	colour markers
• Explain the defin	tion of CST and LST eleme	nts.
 State the applicat Difference between 	ions of triangular elements F	EM's

• Difference between CST and LST elements.

Assignment / Questions: (3 & 3) 1. Write the applications of triangular elements FEM's

- 2. State the Difference between CST and LST elements.
- 3. Define the terms CST and LST elements.

Signature of faculty

LESSON PLAN

Academic Ye	ar :	2021-22		Date: 16-05-2022	
Semester	:	П	Unit-III Triangular	& Axisymmetric	Elements
Name of the I	Program: M.Tech (St	ructural Engineeri	ng)	Year: I	
Course/Subjec	et: FEM in Structural	Engineering	Course Code: GR20	D5012	
Name of the I	Faculty: Dr.GVV Sat	yanarayana.		Dept.: Civil Engi	neering
Designation:	PROFESSOR				
Lesson No:	22			Duration of Less	on: <u>1hr</u>
Lesson Title:	Evaluation of stiffness	matrix for a triang	ular element		
INSTRUCTIO	ONAL/LESSON OB	JECTIVES:			
On completion	n of this lesson the s	tudent shall be ab	le to:		
KnowUnderst	about the B-matrix of stand the procedure in	a triangular elemer evaluation of stiffn	t. ess matrix for a triangula	ar element	
TEACHING TEACHIN	AIDS : white b IG POINTS :	oard, Different co	olour markers		
• Expla	in the B-matrix of a tr	iangular element			

• Explain the procedure in evaluation of stiffness matrix for a triangular element

Assignment / Questions: (3 & 3) 1. Evaluate B-Matrix for a triangular element 2. Determine stiffness matrix for given triangular element

Signature of faculty

LESSON PLAN

Academic Y	lear	: 2021-22		Date: 19-05-2022	
Semester		: II	Unit-III Triangular	& Axisymmetric	Elements
Name of the	Program: M.Tech (S	Structural Engineeri	ing)	Year: I	
Course/Subj	ect: FEM in Structur	al Engineering	Course Code: GR20	D5012	
Name of the	Faculty: Dr.GVV S	atyanarayana.		Dept.: Civil Engi	neering
Designation:	PROFESSOR				
Lesson No:	23			Duration of Less	on: <u>1hr</u>
Lesson Title	: Evaluate the stresses	and strains induced	in triangular element		
<u>INSTRUCT</u> On completi 1. Unde	IONAL/LESSON O on of this lesson the erstand the procedure	BJECTIVES: student shall be ab in evaluation of str	le to: resses and strains induced	d in triangular eleme	ent
TEACHI TEACHI	NG AIDS : wh NG POINTS :	ite board, Different	colour markers		

• Explain the procedure in evaluation of stresses and strains induced in triangular element

Assignment / Questions: (3 & 3) 1. Evaluate the stresses and strains induced in triangular element

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 19-05-2022
Semester	: П	Unit-III Triangular & Axisymmetric Elements
Name of the Program:	M.Tech (Structural Engineer	ring) Year: I
Course/Subject: FEM	in Structural Engineering	Course Code: GR20D5012
Name of the Faculty: I	Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFE	SSOR	
Lesson No: 24		Duration of Lesson: <u>1hr</u>
Lesson Title: Evaluate	the forces, stresses and strains	induced in triangular element
INSTRUCTIONAL/LE	SSON OBJECTIVES:	
On completion of this 1. Understand the	lesson the student shall be all procedure in evaluation of th	ble to: e forces, stresses and strains induced in triangular element
TEACHING AIDS	: white board, Differen	it colour markers

TEACHING POINTS :

• Explain the procedure in evaluate the forces, stresses and strains induced in triangular element

Assignment / Questions: (3 & 3) 1. Evaluate the forces, stresses and strains induced in triangular element

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 23-05-2022				
Semester	: 11	Unit-III Triangular & Axisymmetric Elements				
Name of the Prog	ram: M.Tech (Structural Engineering	y Year: I				
Course/Subject: F	FEM in Structural Engineering C	ourse Code: GR20D5012				
Name of the Facu	lty: Dr.GVV Satyanarayana.	Dept.: Civil Engineering				
Designation: PR	OFESSOR					
Lesson No: 25		Duration of Lesson: <u>1hr</u>				
Lesson Title: Eval	Lesson Title: Evaluate the forces, stresses and strains induced in triangular element					
INSTRUCTIONAL/LESSON OBJECTIVES: On completion of this lesson the student shall be able to: 1. Understand the procedure in evaluation of the forces, stresses and strains induced in triangular element						
TEACHING A TEACHING F	AIDS : white board, Different co POINTS :	olour markers				

• Explain the procedure in evaluate the forces, stresses and strains induced in triangular element

Assignment / Questions: (3 & 3) 1. Evaluate the forces, stresses and strains induced in triangular element

Signature of faculty

LESSON PLAN

Academic	Year	: 2021-22	Ι	Date: 23-05-2022	
Semester		: II	Unit-III Triangula	r & Axisymmetric	Elements
Name of the	ne Program: M.Tech (S	Structural Engineer	ing)	Year: I	
Course/Sul	oject: FEM in Structura	al Engineering	Course Code: GR20D5	5012	
Name of the	ne Faculty: Dr.GVV Sa	atyanarayana.	Ι	Dept.: Civil Engineer	ring
Designatio	n: PROFESSOR				
Lesson No	: 26		I	Duration of Lesson:	<u>1hr</u>
Lesson Tit	e: Evaluation of stiffnes	ss matrix for a CST	element		
INSTRUCTIONAL/LESSON OBJECTIVES: On completion of this lesson the student shall be able to: 1. Understand the procedure Evaluation of stiffness matrix for a CST element					
TEACH TEACH	IING AIDS : wh IING POINTS :	ite board, Different	t colour markers		
• E:	xplain the procedure in e	valuation stiffness n	natrix for a CST element		

Assignment / Questions: (3 & 3) 1. Evaluate the of stiffness matrix for a CST element

Signature of faculty

LESSON PLAN

Academic Ye	ar	: 2021-22		D	ate: 26-05-2022	
Semester		: II	Unit-III	Triangular	& Axisymmetric	Elements
Name of the l	Program: M.Tech (S	Structural Engineeri	ng)	Y	ear: I	
Course/Subject	et: FEM in Structur	al Engineering	Course Code	e: GR20D5()12	
Name of the l	Faculty: Dr.GVV S	atyanarayana.		D	ept.: Civil Engineer	ring
Designation:	PROFESSOR					
Lesson No:	27			D	uration of Lesson:	<u>1hr</u>
Lesson Title:	Evaluation of stiffne	ss matrix for a Axisy	mmetric eleme	ent		
INSTRUCTIO On completion 2. Under TEACHIN TEACHIN	ONAL/LESSON On of this lesson the stand the procedure [G AIDS : what is a stand of the procedure of the procedure of the point of the p	BJECTIVES: student shall be ab Evaluation of stiffn ite board, Different	le to: ess matrix for colour mark	a CST eleme ers	ent	
Expla	in the procedure in e	valuation stiffness m	atrix for a Axi	symmetric el	ement	

Assignment / Questions: (3 & 3) 1. Evaluate the of stiffness matrix for a Axisymmetric element

Signature of faculty

LESSON PLAN

Academic	Year	: 2021-22		Date: 26-05-2022	
Semester		: 11	Unit-III Triangula	ar & Axisymmetric	Elements
Name of t	he Program: M.Tech (Structural Engineer	ing)	Year: I	
Course/Sul	bject: FEM in Structur	ral Engineering	Course Code: GR20D	95012	
Name of t	he Faculty: Dr.GVV S	Satyanarayana.		Dept.: Civil Engineer	ring
Designatio	n: PROFESSOR				
Lesson No	o: 28			Duration of Lesson:	<u>1hr</u>
Lesson Tit	le: Evaluate the stresse	s and strains induced	in axisymmetric element		
INSTRUC	TIONAL/LESSON C	BJECTIVES:			
On comple	tion of this lesson the	student shall be ab	ble to:		
1.Unde	erstand the procedure	in evaluation of the s	stresses and strains induce	d in triangular element	
TEACE	IING AIDS · w	hite board Different	t colour markers		
TEACH	ING POINTS :				
	• • • • • • •				

• Explain the procedure in evaluate the stresses and strains induced in axisymmetric element

Assignment / Questions: (3 & 3) 1. Evaluate the stresses and strains induced in axisymmetric element

Signature of faculty

LESSON PLAN

Academic Y	ear : 2021-22	Date: 02-06-2022
Semester	: 11	Unit-III Triangular & Axisymmetric Elements
Name of the	Program: M.Tech (Structural Engineer	ing) Year: I
Course/Subje	ect: FEM in Structural Engineering	Course Code: GR20D5012
Name of the	Faculty: Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation:	PROFESSOR	
Lesson No:	29	Duration of Lesson: <u>1hr</u>
Lesson Title:	Evaluate the stresses and strains induced	in axisymmetric element
INSTRUCTI	ONAL/LESSON OBJECTIVES	
On completion	on of this lesson the student shall be al	ble to:
1. Unde	rstand the procedure in evaluation of the	e stresses and strains induced in triangular element

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Explain the procedure in evaluate the stresses and strains induced in axisymmetric element

Assignment / Questions: (3 & 3) 1. Evaluate the stresses and strains induced in axisymmetric element

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22		Date: 02-06-2022	
Semester	: II	Unit-III Triangula	r & Axisymmetric	Elements
Name of the Program: M.Te	ch (Structural Engineer	ing)	Year: I	
Course/Subject: FEM in Stru	actural Engineering	Course Code: GR20D	5012	
Name of the Faculty: Dr.GV	V Satyanarayana.		Dept.: Civil Engineer	ring
Designation: PROFESSOR				
Lesson No: 30			Duration of Lesson:	<u>1hr</u>
Lesson Title: Exercise problem	ns in triangular and axis	ymmetric elements.		
<u>INSTRUCTIONAL/LESSON</u> On completion of this lesson 1. Understand the proce	<u>N OBJECTIVES:</u> the student shall be all edure in evaluation of sti	ble to: iffness matrix for a rectang	gular element	
TEACHING AIDS TEACHING POINTS	: white board, Differen :	t colour markers		

• Exercise problems in triangular and axisymmetric elements

Assignment / Questions: (3 & 3) 1. Determine or slove the Exercise problems in triangular and axisymmetric elements.

Signature of faculty

LESSON PLAN

Academic Yea	r : 2021-22	Date: 13-06-2022
Semester	: 11	Unit-III Triangular & Axisymmetric Elements
Name of the P	rogram: M.Tech (Structural Engineer	ing) Year: I
Course/Subject	: FEM in Structural Engineering	Course Code: GR20D5012
Name of the Fa	aculty: Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation:	PROFESSOR	
Lesson No:	31	Duration of Lesson: <u>1hr</u>
Lesson Title: S	olve old question paper problems in tria	angular and axisymmetric elements.
INSTRUCTIO On completion	NAL/LESSON OBJECTIVES: of this lesson the student shall be al	ble to:
1.Understa	id the procedure in evaluation of stiff	ness matrix for a rectangular element
TEACHING TEACHING	AIDS : white board, Differen POINTS :	t colour markers

• Solve old question paper problems in triangular and axisymmetric elements.

Assignment / Questions: (3 & 3) 1. Solve old question paper problems in triangular and axisymmetric elements.

Signature of faculty

•

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 13-06-2022
Semester	: II	Unit-III Triangular & Axisymmetric Elements
Name of the Program	n: M.Tech (Structural Engineerin	g) Year: I
Course/Subject: FEN	A in Structural Engineering	Course Code: GR20D5012
Name of the Faculty:	Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROF	ESSOR	
Lesson No: 32		Duration of Lesson: <u>1hr</u>
Lesson Title: Solve o	old question paper problems in trian	gular and axisymmetric elements.
<u>INSTRUCTIONAL/</u> On completion of thi 1.Understand the	LESSON OBJECTIVES: is lesson the student shall be able procedure in evaluation of stiffne	e to: ss matrix for a rectangular element
TEACHING AID TEACHING POI	NTS : white board, Different	colour markers
• Solve old que	estion paper problems in triangular	and axisymmetric elements.

Assignment / Questions: (3 & 3) 1. Solve old question paper problems in triangular and axisymmetric elements.

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22		Date: 16-06-2022	
Semester	: 11	Unit-IV	V Isoparametric	Formulation
Name of the Program: M	I.Tech (Structural Engined	ering)	Year: I	
Course/Subject: FEM in	Structural Engineering	Course Code: GR20E	05012	
Name of the Faculty: Dr	GVV Satyanarayana.		Dept.: Civil Engi	neering
Designation: PROFESS	OR			
Lesson No: 33			Duration of Less	on: <u>1hr</u>
Lesson Title: Explain Inte	prolation elements			
INSTRUCTIONAL/LES On completion of this les 1. Understand the ir 2. Understand differ	SON OBJECTIVES: son the student shall be a nportance and properties ent types of Isoparametric	able to: of Isoparametric elements c elements		

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Explain various types of Interpolation elements and properties of Isopatrametric elements.

Assignment / Questions: (4 & 4) 1. Explain properties of various types of Isoparametric elements

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 1	6-06-2022
Semester	: I	Unit-IV Isopa	rametric Formulation
Name of the Program: M.Tech	(Structural Engineer	ing) Year: I	
Course/Subject: FEM in Structu	ural Engineering	Course Code: GR20D5012	
Name of the Faculty: Dr.GVV	Satyanarayana.	Dept.: 0	Civil Engineering
Designation: PROFESSOR			
Lesson No: 34		Duratio	n of Lesson: <u>1hr</u>
Lesson Title: Evaluate the stress	es and strains induced	in rectangular element	
INSTRUCTIONAL/LESSON (On completion of this lesson the 1. Understand the procedu	<u>DBJECTIVES:</u> e student shall be a re in evaluation of t	ble to: ne stresses and strains induced in re	ectangular element
TEACHING AIDS : w TEACHING POINTS ·	hite board, Differen	t colour markers	

• Explain the procedure in evaluation of stresses and strains induced in rectangular element

Assignment / Questions: (4 & 4) 1. Derive the stresses and strains induced in a given rectangular element

Signature of faculty

LESSON PLAN

Academic	Year	: 2021-22	Date: 20-06-2022
Semester		: II	Unit-IV Isoparametric Formulation
Name of t	he Program: N	A.Tech (Structural Engineering	ng) Year: I
Course/Su	bject: FEM in	Structural Engineering	Course Code: GR20D5012
Name of t	he Faculty: D	r.GVV Satyanarayana.	Dept.: Civil Engineering
Designatio	n: PROFES	SOR	
Lesson No	o: 35		Duration of Lesson: <u>1hr</u>
Lesson Title: Evaluate the forces, stresses and strains induced in rectangular element			
INSTRUC	TIONAL/LES	SON OBJECTIVES:	
On comple 3. Un	etion of this le derstand the p	sson the student shall be able procedure in evaluation of the	e to: forces, stresses and strains induced in rectangular element
TEACH TEACH	HING AIDS HING POINT	: white board, Different S :	colour markers

• Explain the procedure in evaluation of the forces, stresses and strains induced in rectangular element

Assignment / Questions: (4 & 4) 1. Determine the forces, stresses and strains induced in a given rectangular element

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 20-06-2022
Semester	: II	Unit-IV Isoparametric Formulation
Name of the Program:	M.Tech (Structural Enginee	ring) Year: I
Course/Subject: FEM	n Structural Engineering	Course Code: GR20D5012
Name of the Faculty: I	Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFE	SSOR	
Lesson No: 36		Duration of Lesson: <u>1hr</u>
Lesson Title: Evaluate	the forces, stresses and strains	induced in rectangular element
INSTRUCTIONAL/LE On completion of this 4. Understand the	SSON OBJECTIVES: lesson the student shall be a procedure in evaluation of t	ble to: he forces, stresses and strains induced in rectangular element

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Explain the procedure in evaluation of the forces, stresses and strains induced in rectangular element

Assignment / Questions: (4 & 4) 1. Determine the forces, stresses and strains induced in a given rectangular element

Signature of faculty

element

LESSON PLAN

Academic Year	: 2021-22	Date: 23-06-2022
Semester	: 11	Unit-IV Isoparametric Formulation
Name of the Program: M	I.Tech (Structural Engined	ering) Year: I
Course/Subject: FEM in	Structural Engineering	Course Code: GR20D5012
Name of the Faculty: Dr	.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFESS	SOR	
Lesson No: 37		Duration of Lesson: <u>1hr</u>
Lesson Title: Evaluate the	e forces, stresses and strains	s induced in three dimensional element
INSTRUCTIONAL/LES	SON OBJECTIVES:	
On completion of this les	sson the student shall be	able to:
1. Understand the p	rocedure in evaluation of t	the forces, stresses and strains induced in three dimensional

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Explain the procedure in evaluation of the forces, stresses and strains induced in three dimensional element

Assignment / Questions: (4 & 4) 1. Determine the forces, stresses and strains induced in a given three dimensional element

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 23-06-2022	
Semester	: II	Unit-IV Isoparametric Formulation	
Name of the Program: M.Tec	h (Structural Enginee	ring) Year: I	
Course/Subject: FEM in Stru	ctural Engineering	Course Code: GR20D5012	
Name of the Faculty: Dr.GVV	V Satyanarayana.	Dept.: Civil Engineering	
Designation: PROFESSOR			
Lesson No: 38		Duration of Lesson: <u>1hr</u>	
Lesson Title: Evaluate the forces, stresses and strains induced in rectangular element			
<u>INSTRUCTIONAL/LESSON</u> On completion of this lesson 5. Understand the procee	<u>OBJECTIVES</u> : the student shall be a dure in evaluation of t	ble to: he forces, stresses and strains induced in rectangular element	
TEACHING AIDS :	white board. Differe	nt colour markers	

TEACHING POINTS :

• Explain the procedure in evaluation of the forces, stresses and strains induced in rectangular element

Assignment / Questions: (4 & 4) 1. Determine the forces, stresses and strains induced in a given rectangular element

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 27-06-2022		
Semester	: II	Unit-IV Isoparametric Formulation		
Name of the Program: M.Tech (S	Structural Engineering)	Year: I		
Course/Subject: FEM in Structura	al Engineering Course Code:	GR20D5012		
Name of the Faculty: Dr.GVV Sa	atyanarayana.	Dept.: Civil Engineering		
Designation: PROFESSOR				
Lesson No: 39		Duration of Lesson: <u>1hr</u>		
Lesson Title: Evaluate the forces, s	Lesson Title: Evaluate the forces, stresses and strains induced in rectangular element			
<u>INSTRUCTIONAL/LESSON OBJECTIVES:</u> On completion of this lesson the student shall be able to: 1.Understand the procedure in evaluation of the forces, stresses and strains induced in rectangular element				
TEACHING AIDS: white board, Different colour markersTEACHING POINTS:				

• Explain the procedure in evaluation of the forces, stresses and strains induced in rectangular element

Assignment / Questions: (4 & 4) 1. Determine the forces, stresses and strains induced in a given rectangular element

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 27-06-2022
Semester	: II	Unit-IV Isoparametric Formulation
Name of the Program: M.Tecl	n (Structural Engine	ering) Year: I
Course/Subject: FEM in Struc	tural Engineering	Course Code: GR20D5012
Name of the Faculty: Dr.GVV	Satyanarayana.	Dept.: Civil Engineering
Designation: PROFESSOR		
Lesson No: 40		Duration of Lesson: <u>1hr</u>
Lesson Title: Evaluate the force	es, stresses and strain	s induced in three dimensional element
INSTRUCTIONAL/LESSON	OBJECTIVES:	
On completion of this lesson t	he student shall be	able to:
1. Understand the proced	ure in evaluation of	the forces, stresses and strains induced in three dimensional

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

• Explain the procedure in evaluation of the forces, stresses and strains induced in three dimensional element

Assignment / Questions: (4 & 4) 1. Determine the forces, stresses and strains induced in a given three dimensional element

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 30-06-2022
Semester	: I	Unit-IV Isoparametric Formulation
Name of the Program: M	Tech (Structural Enginee	ring) Year: I
Course/Subject: FEM in	Structural Engineering	Course Code: GR20D5012
Name of the Faculty: Dr.	GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PROFESS	OR	
Lesson No: 41		Duration of Lesson: <u>1hr</u>
Lesson Title: Evaluation of	f stiffness matrix for an ax	isymmetric element
<u>INSTRUCTIONAL/LESS</u> On completion of this less 1. Exercise problems TEACHING AIDS TEACHING POINTS	SON OBJECTIVES: son the student shall be a in unit-4 : white board, Differe :	ible to: nt colour markers
Explain exercise p	roblems in unit-4	

Assignment / Questions: (4 & 4) 1. Exercise problems in rectangular elements..

Signature of faculty

LESSON PLAN

Academic	Year	: 2021-22		Date: 30-06-2022
Semester		: I		Unit-IV Isoparametric Formulation
Name of	he Program: M.Tech (Structural Engineer	ring)	Year: I
Course/Su	bject: FEM in Structur	al Engineering	Course Code: (GR20D5012
Name of t	he Faculty: Dr.GVV S	atyanarayana.		Dept.: Civil Engineering
Designatio	n: PROFESSOR			
Lesson N	o: 42			Duration of Lesson: <u>1hr</u>
Lesson Ti	tle: Evaluation of stiffne	ss matrix for an axis	symmetric element	t
INSTRUC On compl 1 Ex	<u>CTIONAL/LESSON</u> O etion of this lesson the ercise problems in unit	BJECTIVES: student shall be al	ble to:	
TEAC TEAC	HING AIDS : with HING POINTS :	nite board, Differen	t colour markers	

• Explain exercise problems in unit-4

Assignment / Questions: (4 & 4) 1. Exercise problems in rectangular elements..

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22		Date: 04-07-2022
Semester	: I	Uni	it-IV Isoparametric Formulation
Name of the Program: M.Te	ch (Structural Engine	ering)	Year: I
Course/Subject: FEM in Stru	uctural Engineering	Course Code: GR	20D5012
Name of the Faculty: Dr.GV	V Satyanarayana.		Dept.: Civil Engineering
Designation: PROFESSOR	1		
Lesson No: 43			Duration of Lesson: <u>1hr</u>
Lesson Title: Evaluation of st	iffness matrix for an ax	kisymmetric element	
<u>INSTRUCTIONAL/LESSON</u> On completion of this lesson 1.Exercise problems in u	<u>N OBJECTIVES:</u> the student shall be nit-4	able to:	
TEACHING AIDS TEACHING POINTS	: white board, Differe :	ent colour markers	
	1		

• Explain exercise problems in unit-4

Assignment / Questions: (4 & 4) 1. Exercise problems in rectangular elements..

Signature of faculty

•••

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22		Date: 04-07-2022	
Semester	: I	Unit-1	IV Isoparametric Fo	rmulation
Name of the Program: M	1.Tech (Structural Enginee	ring)	Year: I	
Course/Subject: FEM in	Structural Engineering	Course Code: GR20	D5012	
Name of the Faculty: Dr	.GVV Satyanarayana.		Dept.: Civil Engineer	ring
Designation: PROFESS	SOR			
Lesson No: 44			Duration of Lesson:	<u>1hr</u>
Lesson Title: Evaluation	of stiffness matrix for an axi	symmetric element		
INSTRUCTIONAL/LES On completion of this les 1. Solve old question	SON OBJECTIVES: sson the student shall be a on paper problems	ble to:		
TEACHING AIDS TEACHING POINTS	: white board, Differen S :	nt colour markers		
Solve old question	n paper problems			

Assignment / Questions: (4 & 4) 1. Solve old question paper problems in unit -4

Signature of faculty

LESSON PLAN

Academic Y	<i>Y</i> ear	: 2021-22		Date: 07-07-2022	
Semester		: I	Ur	nit-IV Isoparametric Fo	rmulation
Name of the	Program: M.Tech (Structural Engineer	ing)	Year: I	
Course/Subj	ect: FEM in Structur	al Engineering	Course Code: GR	R20D5012	
Name of the	Faculty: Dr.GVV S	atyanarayana.		Dept.: Civil Engineer	ring
Designation:	PROFESSOR				
Lesson No:	45			Duration of Lesson:	<u>1hr</u>
Lesson Title	: Evaluation of stiffne	ss matrix for an axis	ymmetric element		
· INISTRUCT		DIECTIVES			
On completion 1. Sci	on of this lesson the olve old question paper	student shall be ab r problems	ble to:		
TEACHI TEACHI	NG AIDS : wi NG POINTS :	nite board, Different	t colour markers		

• Solve old question paper problems

•••

Assignment / Questions: (4 & 4) 1. Solve old question paper problems in unit -4

Signature of faculty

•••

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 16-07-2022	
Semester	: I	Unit-IV Isoparametric Formu	llation
Name of the Program: M	A.Tech (Structural Enginee	ring) Year: I	
Course/Subject: FEM in	Structural Engineering	Course Code: GR20D5012	
Name of the Faculty: Dr	GVV Satyanarayana.	Dept.: Civil Engineering	5
Designation: PROFES	SOR		
Lesson No: 46		Duration of Lesson: <u>1h</u>	<u>ır</u>
Lesson Title: Evaluation	of stiffness matrix for an axi	symmetric element	
INSTRUCTIONAL/LES On completion of this le 1. Solve old quest	SON OBJECTIVES: sson the student shall be a ion paper problems	ble to:	
TEACHING AIDS TEACHING POINT	: white board, Differen S :	nt colour markers	
Solve old question	on paper problems		

Assignment / Questions: (4 & 4) 1. Solve old question paper problems in unit -4

Signature of faculty

LESSON PLAN

Academic	Year	: 2021-22	Date: 11-07-2022
Semester		: II	Unit-IV Isoparametric Formulation
Name of t	he Program:	M.Tech (Structural Engineer	ring) Year: I
Course/Su	bject: FEM i	n Structural Engineering	Course Code: GR20D5012
Name of t	he Faculty: D	Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designatio	n: PROFE	SSOR	
Lesson No	o: 47		Duration of Lesson: <u>1hr</u>
Lesson Tit	le: Explain N	umerical integration method u	used in FEM
<u>INSTRUC</u> On comple 1. Un	TIONAL/LE etion of this l derstand abo	<u>SSON OBJECTIVES:</u> esson the student shall be a put Explain Numerical integrat	ble to: ion method used in FEM
TEACH TEACH	HING AIDS HING POIN'	: white board, Differen	t colour markers
• E	xplain about t	he Numerical integration meth	od used in FEM

Assignment / Questions: (4 & 4) 1. What is Numerical integration? And state its importance.

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 11-07-2022
Semester	: II	Unit-IV Isoparametric Formulation
Name of the Prog	ram: M.Tech (Structural Engineering)	Year: I
Course/Subject: F	EM in Structural Engineering Course	Code: GR20D5012
Name of the Facu	lty: Dr.GVV Satyanarayana.	Dept.: Civil Engineering
Designation: PR	OFESSOR	
Lesson No: 48		Duration of Lesson: <u>1hr</u>
Lesson Title: Expl	lain Gauss quadrature method	
<u>INSTRUCTIONA</u> On completion of 1. Know abo TEACHING A TEACHING P	<u>L/LESSON OBJECTIVES:</u> This lesson the student shall be able to: out Gauss quadrature method in error calculation MDS : white board, Different colour POINTS :	ions. markers

• Explain Gauss quadrature method with one, two and three point methods

Assignment / Questions: (4 & 4) 1. Evaluate exact solutions for given mathematical expressions.

Signature of faculty

LESSON PLAN

Academic	Year	: 2021-22		Date: 14-07-2022
Semester		: П	ı	Unit-IV Isoparametric Formulation
Name of t	he Program: M.Tech (Structural Engineer	ring)	Year: I
Course/Su	bject: FEM in Structur	ral Engineering	Course Code: G	R20D5012
Name of t	he Faculty: Dr.GVV S	atyanarayana.		Dept.: Civil Engineering
Designatio	n: PROFESSOR			
Lesson No	o: 49			Duration of Lesson: <u>1hr</u>
Lesson Tit	le: Estimate the error c	alculations using Gau	uss quadrature meth	od
<u>INSTRUC</u> On compk 1. Kr TEACH TEACH	CTIONAL/LESSON C etion of this lesson the now about Gauss quadra HING AIDS : with HING POINTS :	DBJECTIVES: student shall be all ature method in error hite board, Differen	ole to: r calculations. t colour markers	
• E	xplain Gauss quadrature	method with one, tw	wo and three point n	nethods

Assignment / Questions: (4 & 4) 1. Evaluate exact solutions and errors for given mathematical Expressions using Gauss quadrature method.

Signature of faculty

LESSON PLAN

Academic	Year	: 2021-22	Da	ate: 14-07-2022	
Semester Name of t	he Program: M	: II I.Tech (Structural Engineer	Unit-V Introduing)	uction in Non-linear analysis Year: I	
Course/Sul	Course/Subject: FEM in Structural Engineering Course Code: GR17D5162				
Name of t	he Faculty: Dr.	GVV Satyanarayana.		Dept.: Civil Engineering	
Designatio	n: PROFESS	SOR			
Lesson No	o: 50			Duration of Lesson: <u>1hr</u>	
Lesson Tit	le: Introduction	in Non-linear analysis			
INSTRUCTIONAL/LESSON OBJECTIVES: On completion of this lesson the student shall be able to: 1. The difference between linear and non-linear material properties					
TEACHIN TEACHIN	TEACHING AIDS : white board, Different colour markers TEACHING POINTS :				

• Explain the difference between linear and non-linear material properties .

TEACHING AIDS : white board, Different colour markers TEACHING POINTS :

Assignment / Questions: (5 & 5) 1. List out difference between linear and non-linear material properties

Signature of faculty

LESSON PLAN

Academic	Year	: 2021-22		Date: 18	-07-2022	
Semester		: 11	Unit-V	Introduction	in Non-linear	• analysis
Name of t	he Program: M.Tech (Structural Engineer	ing)	Year:	Ι	
Course/Su	bject: FEM in Structur	al Engineering	Course Code:	GR17D5162		
Name of t	he Faculty: Dr.GVV S	atyanarayana.		Dept.	: Civil Engineer	ring
Designatio	n: PROFESSOR					
Lesson No	o: 51			Durat	ion of Lesson:	<u>1hr</u>
Lesson Tit	le: Differentiate betwee	n various non-linear	analysis			
INSTRUC On comple 1. Dis	CTIONAL/LESSON O etion of this lesson the scuss the differences bet	BJECTIVES: student shall be ab ween various non-line	le to: ear analysis metl	nod		
TEACHIN TEACHIN	IG AIDS : white NG POINTS :	board, Different co	olour markers			
•	Explain the differences	between various nor	-linear analysis			

Assignment / Questions: (5 & 5) 1. Discuss the differences between various non-linear analysis methods.

Signature of faculty

LESSON PLAN

Academic	Year	: 2021-22		Date: 18-07-2022
Semester		: 11	Unit-V	Introduction in Non-linear analysis
Name of t	he Program: M.Tech (S	Structural Engineerin	ng)	Year: I
Course/Subject: FEM in Structural Engineering Course Code: GR17D5162				
Name of t	he Faculty: Dr.GVV Sa	atyanarayana.		Dept.: Civil Engineering
Designatio	n: PROFESSOR			
Lesson No	o: 52			Duration of Lesson: <u>1hr</u>
Lesson Tit	le: Differentiate betwee	n various non-linear a	nalysis	
INSTRUCTIONAL/LESSON OBJECTIVES: On completion of this lesson the student shall be able to:				
1. Dis	cuss the differences betw	ween various non-lines	ar analysis meth	nod
TEACHIN TEACHIN	G AIDS : white G POINTS :	board, Different col	lour markers	

• Explain the differences between various non-linear analysis

Assignment / Questions: (5 & 5) 1. Discuss the differences between various non-linear analysis methods.

Signature of faculty

LESSON PLAN

Academic Year	: 2021-22	Date: 21-07-2022
Semester	: II	Unit-V Introduction in Non-linear analysis
Name of the Program: M.Tech (Structural Engineering	Year: I
Course/Subject: FEM in Structur	ral Engineering Co	ourse Code: GR17D5162
Name of the Faculty: Dr.GVV S	atyanarayana.	Dept.: Civil Engineering
Designation: PROFESSOR		
Lesson No: 54		Duration of Lesson: <u>1hr</u>
Lesson Title: Explain the important	nce of non-linear analysis	3
INSTRUCTIONAL/LESSON O	BJECTIVES:	
On completion of this lesson the	student shall be able t	0:
• Know the importance of no	on-linear analysis	
TEACHING AIDS : white TEACHING POINTS :	board, Different colou	r markers

• Explain the importance of non-linear analysis

Assignment / Questions: (5 & 5) 1. Explain the importance of non-linear analysis

Signature of faculty

MAPPING

GR20D5012- FEM in Structural Engineering	Course Outcomes				
Course Objectives	1	2	3	4	5
1	X				
2		Х			
3			Х	Х	Х
4					
5					

GR20D5012- FEM in Structural Engineering	Course Outcomes				
Assessment	1	2	3	4	5
1	Х				
2		Х			
3			Х	X	Х
4					

GR20D5012- FEM in Structural Engineering	Course Objectives								
Assessments	1	2	3	4	5				
1	X								
2		X							
3			X						
4			X						
5				X					
Course		Program Outcomes							
--	---	------------------	---	---	---	---	--	--	--
Course	1	2	3	4	5	6			
GR20D5012- FEM in Structural Engineering	Χ	Х	Х	Х	Х	Х			

GR20D5012- FEM in Structural Engineering Program Outcomes					es	
Course Outcomes	1	2	3	4	5	6
Use minimum potential energy principle in Finite Element Method	Н				Μ	М
Analyse one dimensional elements like beam element using FEM approach	М		М	М	Μ	М
Formulate interpolation functions and evaluation of structural deformation using Galerkin approach.	Н	М	М		Μ	М
Evaluation of stress and strains in 2D, 3D elements using iso-parametric and axi- symmetric element approach.	Μ		М	М		М
Predict the error using Gauss quadrature method	M	М	Μ	Μ	Μ	Μ
Use minimum potential energy principle in Finite Element Method	Н				Μ	М
Analyse one dimensional elements like beam element using FEM approach	Μ		М	М	Μ	М

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

Department of Civil Engineering

I M.Tech II (Semester Structural Engineering)

FEM IN STRUCTURAL ENGINEERING (GR20D5012)

COURSE FILE CHECK LIST

S.No.	Name of the Format	Page
1.	Syllabus	
2.	Time Table	
3.	Program educational Objectives	
4.	Program objectives	
5.	Course Objectives	
6.	Course Outcomes	
7.	Students Roll List	
8.	Guide lines to study the course books & references, course design & delivery	
9.	Course schedule	
10.	Unit plan/Course Plan	
11.	Evaluation Strategy	
12.	Assessment in relation to COB's and Co's	
13.	Tutorial Sheets	
14.	Assignment Sheets	
15.	Rubric for Course	
16.	Mappings of CO's and Po's	
17.	Model question papers	
18.	Mid-I and Mid-II question papers	
19.	Mid –I marks	
20.	Mid –II marks	
21.	Sample answer scripts and Assignments	
22.	Course materials like notes, PPT's, Videos etc.,	

(GR20D5012) FEM IN STRUCTURAL ENGINEERING

I M.Tech (Structural Engineering) – II Semester (2021-22)

Dr. G.V.V.Satyanarayana

Professor

Department of Civil Engineering Gokaraju Rangaraju Institute of Engineering and Technology,

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

Gokaraju Rangaraju Institute of Engineering and Technology Department of Civil Engineering Structural Analysis

Course File Check List

S.No.	Name of the Format	Page No.					
1	Syllabus						
2	Time Table						
3	Program Educational Objectives						
4	Program Objectives						
5	Course Objectives						
6	Course Outcomes						
7	Students Roll List						
8	Guide lines to study the course books & references, course design & delivery						
9	Course Schedule						
10	Unit Plan/Course Plan						
11	Evaluation Strategy						
12	Assessment in relation to COB's and CO's						
13	Tutorial Sheets						
14	Assignment Sheets						
15	Rubric for course						
16	Mappings of CO's and PO's						
17	Model question papers						
18	Mid-I and Mid-II question papers						
19	Mid-I marks						
20	Mid-II marks						
21	Sample answer scripts and Assignments						
22	Course materials like Notes, PPT's, Videos, etc,.						

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF CIVIL ENGINEERING (2021-22)

Subject: FEM in Structural Engineering

Class: M.Tech., I/II (Section - A)

Name : Dr.G V V SATYANARAYANA

Sub Code: GR20D5012

S.No	Date`	Unit	Session	Topics
		No	Duration	
1.	11-04-2022			Introduction about FEM and concepts of FEM
2.	11-04-2022			History and applications of FEM
3.	14-04-2022			Minimum Potential energy principle
4.	14-04-2022			Discuss on bar and spring element
5.	18-04-2022			Evaluation of stiffness matrix for bar element using
				minimum potential energy method
6.	18-04-2022			Evaluation of stiffness matrix for bar element using direct
				stiffness method
7.	21-04-2022	Ι		Assembly of global stiffness matrices. Element strain &
-	01.01.0000			stress
8.	21-04-2022			Evaluation of stresses and strains in bar element
9.	25-04-2022			Discuss on nodal equilibrium equations
10.	25-04-2022			Introduction about Method of weighted Residual method
11.	28-04-2022			Explain the various Method of weighted Residual method
12.	28-04-2022			Explain compatibility & completeness requirements
13.	02-05-2022			Polynomial forms and their applications
14.	02-05-2022			One dimensional FEM Introduction about 1-D
				element
15.	05-05-2022			Derivation of stiffness matrix for flexure element using
				minimum potential energy method
16.	05-05-2022			Derivation of stiffness matrix for flexure element using
	00.05.0000			direct stiffness approach method
17.	09-05-2022	II		Evaluation of stresses in a flexure element
18.	09-05-2022			Evaluation of strains in a flexure element
19.	12-05-2022			Derivation of stiffness matrix for truss element
				Derivation of stresses and strains matrix for truss element
20.	12-05-2022			Derivation of stresses and strains matrix for truss element
21.	16-05-2022			Introduction to Triangular element using in FEM's
22.	16-05-2022			Evaluation of stiffness matrix for a triangular element
23.	19-05-2022			Evaluate the stresses and strains induced in triangular
	10.05.2022			element
24.	19-05-2022			Evaluate the forces, stresses and strains induced in
25	22 05 2022			Triangular element
25.	25-05-2022	111		triangular element
26	23 05 2022			Evaluation of stiffnass matrix for a set amont
20.	25-05-2022			Evaluation of stiffness matrix for a Avi Symmetric
27.	20-03-2022			evaluation of sufficess matrix for a Axi-symmetric
28	26-05-2022			Evaluate the stresses and strains induced in Avi-
20.	20-05-2022			Symmetric element
29	02-06-2022			Evaluate the stresses and strains induced in Axi-
25.	32 00 2022	l		

			Symmetric element
30.	02-06-2022		Exercise problems
31.	13-06-2022		Solve old question paper problems
32.	13-06-2022		Solve old question paper problems
33.	16-06-2022		Unit-4 Explain Interpolation elements
34.	16-06-2022		Evaluate the stresses and strains induced in rectangular
			element
35.	20-06-2022		Evaluate the stresses and strains induced in rectangular element
36.	20-06-2022		Evaluate the forces, stresses and strains induced in rectangular element
37.	23-06-2022		Evaluate the stresses and strains induced in rectangular element
38.	23-06-2022		Evaluate the forces, stresses and strains induced in rectangular element
39.	27-06-2022		Evaluate the forces, stresses and strains induced in three dimensional element
40.	26706-	IV	Evaluation of stiffness matrix for a three dimensional
	2022		element
41.	30-06-2022		Exercise problems
42.	30-06-2022		Exercise problems
43	04-07-2022		Exercise problems
44.	04-07-2022		Solve old question paper problems
45.	07-07-2022		Solve old question paper problems
46.	16-06-2022		Solve old question paper problems
47.	11-07-2022		Explain Numerical integration method used in FEM
48.	11-07-2022		Explain Gauss quadrature method
49.	14-07-2022		Estimate the error calculations using Gauss quadrature method
50.	14-07-2022		Unit-5 Introduction in Non-linear analysis used in FEM
51.	18-07-2022		Differentiate between various non-linear analysis
52.	18-07-2022	V	Differentiate between various non-linear analysis
53.	21-07-2022	v	Explain the importance of non-linear analysis
54.	21-07-2022		Explain the importance of non-linear analysis
55.	25-07-2022		Explain Numerical integration method used in FEM
56.	25-07-2022		Revision in unit-1
57.	28-07-2022		Revision in unit-2
58.	28-07-2022		Revision in unit-3
59.	01-08-2022		Revision in unit-4
60.	01-08-2022		Revision in unit-5