

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY Department of Civil Engineering

COURSE FILE

Course Name: Structural Analysis-II

Course Code: GR18A3001

III B.Tech - 1st Semester

Academic Year: 2021-22

Dr. V Srinivasa Reddy & SP RAJU V

(Assoc.Prof.) (Asst.Prof.)

STRUCTURAL ANALYSIS-II

Course File Check List

S.No	Name of the Format	Page No.
1	Syllabus	
2	Time Table	
3	Program Educational Objectives	
4	Program Objectives	
5	Course Objectives	
6	Course Outcomes	
7	Students Roll List	
8	Guide lines to study the course	
9	Course Schedule	
10	Course Plan	
11	Unit Plan	
12	Lesson Plan	
13	Tutorial Sheets	
14	Assignment Sheets	
15	Evaluation Strategy	
16	Assessment in relation to COb's and CO's	
17	Rubric for course	
18	Mappings of CO's and PO's	
19	Model question papers	
20	Mid-I and Mid-II question papers	
21	Mid-I marks	
22	Mid-II marks	
23	Sample answer scripts and Assignments	
24	Course materials like Notes, PPT's, Videos, etc,.	

STRUCTURAL ANALYSIS-II

Course Code: GR18A3001 L T P C

III Year. I Semester 3 0 0 3

UNIT I Analysis of building frames- Moment Distribution Methods of analysis to simple portal frames without and with sway - frames with inclined legs.

UNIT II Analysis of building frames- Kani's Method of analysis to continuous beams and Portal frames (up to single bay two storages).

UNIT III Approximate method of Analysis: Frames with vertical loads using Substitute frame method – Frames with horizontal loads using Portal and Cantilever methods

UNIT IV Matrix method of analysis: Different approaches to matrix methods- analysis using stiffness matrix methods for beams and frames (3 DOF) and flexibility matrix methods for beams and frames (2DOF)

UNIT V Plastic analysis: Concepts - Plastic hinges- mechanism- -Shape factors- upper and lower bound theorem- Plastic analysis for simple beam and simple portal frames

STRUCTURAL ANALYSIS-II

III B.TECH (CE) –I SEMESTER Section-A TIME TABLE 2021

	1	2	3	4	5	6	7	8
	9:00AM-	9:45AM-	10:30AM-	11:15AM-	12:00PM-	12:30PM-	1:20PM-	2:10PM-
	9:45AM	10:30AM	11:15AM	12:00AM	12:30PM	1:20PM	2:10PM	3:00PM
Mon					L		SA	A-II
					U			
Tue					N			
					С			
Wed					Н			
Thu								
Fri								
Sat						SA-II		

Signature of HOD	Signature of faculty
Date:	Date:

STRUCTURAL ANALYSIS-II

III B.TECH (CE) –I SEMESTER Section-B TIME TABLE 2021-22

	1	2	3	4	5	6	7	8
	9:00AM-	9:45AM-	10:30AM-	11:15AM-	12:00PM-	12:30PM-	1:20PM-	2:10PM-
	9:45AM	10:30AM	11:15AM	12:00AM	12:30PM	1:20PM	2:10PM	3:00PM
Mon					L			
Tue			SA-II		U			
					N			
Wed					С			
Thu					Н			
Fri								
Sat	SA-II		•					

Signature of HOD	Signature of faculty
Date:	Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Programme Educational Objectives (PEO's)

- 1. Graduates of the programme will be successful career in technical and professional career.
- 2. Graduates of the programme will have proficiency in solving real time Civil Engineering projects.
- 3. Graduates of the programme will continue to engage in lifelong learning with ethical and social responsibility.

Program Outcomes (PO's)

Graduates of the Civil Engineering programme will be able to

- a. apply knowledge of mathematics, science and fundamentals of Civil Engineering.
- b. analyse problem and interpret the data.
- c. design a system component, or process to meet desired needs in Civil Engineering within realistic constraints.
- d. identify, formulate, analyse and interpret data to solve Civil Engineering problems.
- e. use modern engineering tools such as CAD and GIS for the Civil Engineering practice.
- f. understand the impact of engineering solutions in a global, economic and societal context.
- g. understand the effect of Civil Engineering solutions on environment and to demonstrate the need for sustainable development.
- h. understanding of professional and ethical responsibility.
- i. work effectively as an individual or in a team and to function on multi-disciplinary context.
- j. communicate effectively with engineering community and society.
- k. demonstrate the management principles in Civil Engineering projects.
- I. recognize the need for and an ability to engage in life-long learning.

Program Specific Outcomes (PSO's)

PSO1: Recognize the need for a sustainable environment and design smart infrastructure considering the global challenges.

PSO2: Create and develop innovative designs with new era materials through research and development.

Signature of HOD	Signature of faculty
Date:	Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

COURSE OBJECTIVES

Academic Year : 2021-2022

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR18A3001

Name of the Faculty: V.SRINIVASA REDDY & SP RAJU V

Designation: PROFESSOR & ASSISTANT PROFESSOR

The expected outcomes of the Course/Subject are:

S.No	OBJECTIVES
1	Analyze the building frames using Moment distribution method
2	Analyze the building frames using Kani's methods
3	Demonstrate the Approximate analysis of multi-storey frames using portal, cantilever and substitute frame methods
4	Analyze the simple beams and frames using stiffness matrix and flexibility matrix methods
5	Evaluate the collapse load and plastic moment carrying capacity of beams and frames

Signature of HOD Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Dept.: CIVIL ENGINEERING

COURSE OUTCOMES

Academic Year	:	2021-2022

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR18A3001

I

Name of the Faculty: V.SRINIVASA REDDY & SP RAJU V

Designation: PROFESSOR & ASSISTANT PROFESSOR

The expected outcomes of the Course/Subject are:

Semester

S.No	Outcomes
1	Analyze various types of frames with and without sway using Moment distribution methods
2	Analyze various types of frames using Kani's methods of Analysis
	Evaluate the shear forces, bending moments and axial forces in beams, columns and at joints of multi-
3	storey frames using approximate methods of analysis
	Analyze the simple beams and frames using stiffness matrix and flexibility matrix methods of analysis.
4	
5	Apply the principles of virtual work to estimate the collapse load and plastic moment carrying capacity of simple beams and frames.

Signature of HOD	Signature of faculty
Date:	Date

Gokaraju Rangaraju Institute of Engineering & Technology Bachupally, Nizampet Road, Kukatpally, Hyderabad-500009 B.Tech Civil Engg. III Yr-II Sem- Section A- GR18 2021 -22

S.No	Reg No	Student Name
1	18241A0151	SOHEB PATEL
2	18241A0152	SRIAM SHIVA ADITYA
3	19241A0101	RUHAIL AHMAD LONE
4	19241A0102	AITHA SAI TEJA
5	19241A0103	BARISETTY SHIVA KARTHIK
6	19241A0104	BENDHI VARUN THEJA GOUD
7	19241A0105	BHUKYA VAMSHI
8	19241A0106	BOGE VENKAT ROHITH
9	19241A0107	BONTHA PRANEETHKUMAR
10	19241A0108	CHILUKA RAHUL
11	19241A0109	DANDI KIRAN
12	19241A0110	DAYYA RAGNESH
13	19241A0111	E MANISH GOUD
14	19241A0112	ERRAM SAI PRIYA
15	19241A0113	G DEEPIKA
16	19241A0114	GORANTALA SAI
17	19241A0115	GUGULOTHU SANTHOSH
18	19241A0116	GURIJALA SAI KUMAR
19	19241A0117	GURUJALA SRIDHAR
20	19241A0118	IRUVANTI HEMANTH KUMAR
21	19241A0119	JANGITI VYSHNAVI
22	19241A0120	JARUPLA CHERAN
23	19241A0122	JETTI SREEVANI
24	19241A0123	K SOWMYA
25	19241A0124	KADALI KRISHNASRI SAI
26	19241A0125	KAMAREDDY AKSHAY
27	19241A0126	KATTA SAI KUMAR
28	19241A0127	KOLLURI.TEJASWI
29	19241A0128	KONDAPURAM SRIJA
30	19241A0129	KOTTE VIVEK
31	19241A0130	KRUTHIKA VIJAY PALANGE
32	19241A0131	MADA AKHIL REDDY
33	19241A0132	MADARAM SHRAVAN KUMAR REDDY
34	19241A0133	MADDIGATLA AJAY SAGAR
35	19241A0134	CHANDANA MALPATEL
36	19241A0135	MANDALA CHINNI
37	19241A0136	MIREGILLA VIJAYAKUMAR

38	19241A0137	MOHD OBAID KASHIF
39	19241A0138	NARAPAKA MADHAV KUMAR
40	19241A0139	NIMMALA ARSHITHA
41	19241A0141	P SIDDARTHA
42	19241A0142	PAGIDIPALLY AJAY KUMAR
43	19241A0143	PALLAPU NAVEEN
44	19241A0144	PALLE SANATH KUMAR
45	19241A0145	PANTANGI PRANAY
46	19241A0146	PATIL SWAPNIL
47	19241A0147	POLISETTY SAAHAS
48	19241A0148	S.SAITEJA
49	19241A0149	SAI NEERAJ M
50	19241A0150	SATYA SAI PRASANNA REDDY SOLIPETA
51	19241A0151	SHAIK BILAL
52	19241A0152	SHAIK FIRDOUS AYESHA
53	19241A0153	SOORA VIKAS
54	19241A0154	TELLAM SRI SAI PAVANA ROSHINI
55	19241A0155	THALLAPALLY SWARANYA
56	19241A0156	THUMATI VENKATA VAYUNANDHAN
57	19241A0157	UDUMULA NIKHIL REDDY
58	19241A0158	VELISHALA GAYATHRI
59	19241A0159	VENKATA SIDDHARTHA RAJU VEGESNA
60	19241A0160	YASWANTH KURUVA

Gokaraju Rangaraju Institute of Engineering & Technology Bachupally, Nizampet Road, Kukatpally, Hyderabad-500009 B.Tech Civil Engg. III Yr-II Sem- Section B- GR18 2021 -22

S.No	Reg No	Student Name	
1	19241A0161	ABDUL RAHEEM	
2	19241A0162	ANEMONI MURALI MANOHAR	
3	19241A0163	ASKANY HARISH SAGAR	
4	19241A0164	BODLA AKSHITH	
5	19241A0165	BURRA VAMSHI KRISHNA	
6	19241A0166	CHERLAKOLA AKHILA	
7	19241A0167	CHINTAPALLI VIKRAM	
8	19241A0168	CHIRRIBOYINA DHANYA	
9	19241A0169	D SREE MADHURI	
10	19241A0170	GADDAM SAHITHI	
11	19241A0171	GAJJALA SUKENDHAR REDDY	
12	19241A0172	YASHASWI GANGAVARAM	
13	19241A0173	GINDHAM ADITYA KUMAR	
14	19241A0174	GUDHETI NARENDAR REDDY	
15	19241A0175	GUMMADI SAI PRATEEK REDDY	
16	19241A0176	HANMAPUR DHEERAJ GOUD	
17	19241A0177	JAVVAJI AISHWARYA	
18	19241A0178	JULAPALLY NITHIN RAO	
19	19241A0179	K NAVEEN	
20	19241A0180	K RAJESHWARI	
21	19241A0181	KACHAVA SURENDAR	
22	19241A0182	KODATHALA INDU	
23	19241A0183	KOTARU SRINIVASA VARAPRASAD	
24	19241A0184	MALOTH RAHUL	
25	19241A0185	MATURI SATHVIK	
26	19241A0186	MD ABDUL MAAJID	
27	19241A0187	MEDARI DAYANA	
28	19241A0188	NARSINGA SANDEEP	
29	19241A0189	PALANATI ROHITH	
30	19241A0190	PURALASETTY BHAVANA	
31	19241A0191	RODDA MALAVIKA REDDY	
32	19241A0192	SAPRAM NAGA SRILOWKYA MUKTHA	
33	19241A0193	SHAIK PARVEZ ANSARI	
34	19241A0194	SIDDELA THARUN KUMAR	
35	19241A0195	TALARI CHANDANA SREE	
36	19241A0196	VALLEPU KALYAN	

37	19241A0197	VRASHAB PATEL
38	19241A0198	YELLAVULA NARENDER
39	19241A0199	BADDELA SAI THARUN
40	20245A0101	Aamanchi Bowmi
41	20245A0102	Aviraboina Sai Chaithanya
42	20245A0103	Bairy B S Anirudh
43	20245A0104	Daddu Tejasree
44	20245A0105	Dopathi Raviteja
45	20245A0106	Eruventi Niharika
46	20245A0107	Gaddamidi Aanil
47	20245A0108	Gandla Rishik Raj
48	20245A0109	Gone Naveen Kumar
49	20245A0110	Kota Vishal
50	20245A0111	Kummari Mahesh
51	20245A0112	Lakavath Anil
52	20245A0113	Madavaram Rohith
53	20245A0114	Mandala Akshitha
54	20245A0115	M Manjunath
55	20245A0116	Porandla Nagabhushanam
56	20245A0117	Pulishetty Bhavani
57	20245A0118	Racha Kranthi Ranadeer
58	20245A0119	S Manoj Kumar
59	20245A0120	Samudrala Manideep
60	20245A0121	Sangepaga Goutham
61	20245A0122	Sodadasi Rahul
62	20245A0123	Vanga Harshith
63	20245A0124	Choleti Vineetha
64	20245A0125	Gangula Grishma
65	20245A0126	Bollampalli Sai Poojith
66	20245A0127	Pamulapati Sumanth
67	20245A0128	T Sanghamithra
68	20245A0129	Ambeda Akanksha
69	20245A0130	Doppalapudi Ramvineeth Sai
70	20245A0131	Pilly Uday Kiran

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

GUIDELINES TO STUDY THE COURSE/SUBJECT

Academic Year : 2021-22

Semester : I

Name of the Program: B.Tech Civil Engineering. Year: III Section: A & B

Course/Subject: SA-II Course Code: GR18A3001

Name of the Faculty: Dr. V. SRINIVASA REDDY & SP RAJU V Dept.: Civil Engineering

Designation: Professor / Assistant Professor

Guidelines to students:

Guidelines to study the course: SA-II

The course helps the students to learn and understand about the design of various structural elements of buildings by using Limit state method. The course makes the students to understand the design procedure of Beams, Slabs, Columns, Footings, Stairs and Canopy. It also makes the students to understand the design of beams and slabs for Limit state of serviceability.

The students should have the prerequisites:

- Knowledge of Concrete and Steel.
- Knowledge of various structural elements of Buildings.

Where will this subject help?

- Useful in knowing the difference between Limit State method and Working Stress method.
- Useful in determining the area of steel, spacing between the bars and size of elements such as beams, slabs, footings, stairs and canopy for the given moment/Loads.
- Useful in determining the capacity of structural elements for the given size of section and area of steel.

Course Design and Delivery System (CDD):

- The Course syllabus is written into number of learning objectives and outcomes.
- These learning objectives and outcomes will be achieved through lectures, assessments, assignments, experiments in the laboratory, projects, seminars, presentations, etc.
- Every student will be given an assessment plan, criteria for assessment, scheme of evaluation and grading method.

• The Learning Process will be carried out through assessments of Knowledge, Skills and Attitude by various methods and the students will be given guidance to refer to the text books, reference books, journals, etc.

The faculty be able to –

- Understand the principles of Learning
- Understand the psychology of students
- Develop instructional objectives for a given topic
- Prepare course, unit and lesson plans
- Understand different methods of teaching and learning
- Use appropriate teaching and learning aids
- Plan and deliver lectures effectively
- Provide feedback to students using various methods of Assessments and tools of Evaluation
- Act as a guide, advisor, counselor, facilitator, motivator and not just as a teacher alone

Signature of HOD	Signature of faculty
Date:	Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

COURSE SCHEDULE

Semester : I

Name of the Program: B.Tech Civil Engineering Year: III Section: A

Course/Subject: SA-II Course Code: GR18A3001

Name of the Faculty: Dr. . V. SRINIVASA REDDY & SP RAJU V Dept.: Civil Engineering

Designation: Professor / Assistant Professor

The Schedule for the whole Course / Subject is:

		Duratio	Total No.	
S. No.	Description	From	То	of
				Periods
1.	UNIT-1	16/08/21	04/09/21	8
2.	UNIT-II	07/09/21	21/09/21	13
3.	UNIT-III	05/10/21	23/10/21	13
4.	UNIT-IV	26/10/21	06/11/21	8
5.	UNIT-V	09/11/21	04/12/21	13

Total No. of Instructional periods available for the course: <u>55</u> Hours / Periods

Signature of H.O.D	Signature of faculty
Date:	Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

COURSE SCHEDULE

Academic	Year	:	2021-22

Semester : I

Name of the Program: B.Tech Civil Engineering Year: III Section: B

Course/Subject: SA-II Course Code: GR18A3001

Name of the Faculty: Dr. V. SRINIVASA REDDY & SP RAJU V Dept.: Civil Engineering

Designation: Professor / Assistant Professor

The Schedule for the whole Course / Subject is:

	Total the whole course, a disject is:	Duration	Total No.	
S. No.	Description	From	То	of
				Periods
1.	UNIT-1	16/08/21	04/09/21	8
2.	UNIT-II	07/09/21	21/09/21	13
3.	UNIT-III	05/10/21	23/10/21	13
4.	UNIT-IV	26/10/21	06/11/21	8
5.	UNIT-V	09/11/21	04/12/21	13

Total No. of Instructional periods available for the course: <u>55</u> Hours / Periods

Signature of H.O.D	Signature of faculty
Date:	Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS COURSE PLAN

Academic Year : 2021-22

Semester : I

Name of the Program: B.Tech CIVIL Year::III Section: A

Course/Subject: STRUCTURAL ANALYSIS-II Course Code:GR18A3001

Name of the Faculty: SP RAJU Dept.: CIVIL ENGINEERING

Designation: ASSISTANT PROFESSOR

Unit	Lesson No.	Date	No of Perio d	Topics / Sub - Topics	Objective & Outcome Nos.	References (Text Book, Journal) Page Nos.:to	Bloom's Knowledge levels
	1.	16/08/21	1	Introduction –determinate structural analysis	COB-1 CO-1	Vazirani&Ratwan i (pg.1-2) vol 2	Level 2
	2.	19/08/21	1	Indeterminate structural analysis	COB-1 CO-1	Vazirani &Ratwani (pg-3 - 11) vol 2	Level 2
	3.	21/08/21	1	Indeterminate structural analysis	COB-1 CO-1	Vazirani &Ratwani (pg. 3 -11) vol 2	Level 2
	4.	23/08/21	1	Application Of Moment distribution method for symmetrical frames	COB-1 CO-1	Vazirani &Ratwani (pg. 12 -31) vol 2	Level 2
1	5.	26/08/21	1	Application of Moment distribution method to frames with inclined members	COB-1 CO-1	Vazirani &Ratwani (pg. 12 -31) vol 2	Level 2
	6	28/08/21	1	Application of Moment distribution method to frames with inclined members	COB-1 CO-1	Vazirani &Ratwani (pg. 12 -31) vol 2	Level 2
	7	28/08/21	1	Application of Moment distribution method to frames with inclined members	COB-1 CO-1	Vazirani &Ratwani (pg. 12 -31) vol 2	Level 2
	8	02/09/21	1	Application of Moment distribution method to frames with inclined members	COB-1 CO-1	Vazirani &Ratwani (pg. 12 -31) vol 2	Level 2

	9	02/09/21	1	Application of Moment distribution	COb-1	Vazirani	Levels 2&3
				method to frames with inclined members	CO-1	&Ratwani	
	10				G0G 1	(pg. 150) vol 2	1 202
	10	04/09/21	1	Application of Moment distribution method	COC-1	Vazirani	Levels 2&3
				for antisymmetrical frames	CO-1	&Ratwani	
				for antisymmetrical frames		(pg. 213-258) vol	
						2	
	11		1	Application of Moment distribution	COB-1	Vazirani	Levels 2&3
		04/09/21		method for antisymmetrical frames	CO-1	&Ratwani	
				for antisymmetrical frames		(pg. 213-258) vol	
						2	
	12	07/09/21	1	Kani's method of analysis	COB-2	Dr. Vaidyanathan	Level 2
				for continuous beams	CO-2	(pg.48)	
	10		1	Waritana da da Canalaria	COD 2	Vol-1	I1.0
	13	07/09/21	1	Kani's method of analysis for continuous beams	COB-2	Dr. Vaidyanathan	Level 2
	1.4	00/00/04	1	Kani's method of analysis	CO-2,3 COB-2	(pg.48)Vol-1 Vazirani &Ratwani	Level 2
	14	08/09/21	1	for continuous beams	COB-2 CO-2,3,4	(pg.338 -345) vol 2	Level 2
	15	00/00/21	1	Kani's method of analysis	CO ₂ ,3,4	Dr. Vaidyanathan	Level 2
	13	08/09/21	1	for continuous beams	CO ₂ -2,3,4	(pg.80 -99) vol 1	LCVCI Z
	16	09/09/21	1	Kani's method of analysis	COB-2	Vazirani & Ratwani	Level 3
	10	09/09/21	•	for continuous beams	CO-2,3,4	(pg.345 -358) vol 2	Level 3
				with support settlement	_,_,,	(18:0 : 200)	
	17	09/09/21	1	Kani's method of analysis	COB-2	Dr. Vaidyanathan	Level 3
		05/05/21		for continuous beams	CO-2,3,4	(pg.141 -176) vol 1	
				with support settlement		,	
	18	10/09/21	1	Kani's method of analysis	COB-2	Vazirani & Ratwani	Level 3
		,,		for continuous beams	CO-2,3,4	(pg.415-422) vol 2	
				with support settlement			
	19	14/09/21	1	Kani's method of analysis for frames		Dr. Vaidyanathan	Level 3
				without lateral	CO-2,3,4	(pg.176 -213) vol 1	
	20		1	translation of joints	COD 2	M : :0 D :	I1 2
2	20	14/09/21	1	Kani's method of analysis for frames without lateral	COB-2 CO-2,3,4	Vazirani & Ratwani	Level 3
_				translation of joints	CO-2,3,4	(pg.437-452) vol 2	
	21	10/00/21	1	Kani's method of analysis for frames	COB-2	Dr. Vaidyanathan	Level 3
	21	18/09/21	1	without lateral	CO-2,3,4	(pg.405 -418) vol 1	Level 3
				translation of joints	_,_,,	(18.100	
	22	18/09/21	1	Kani's method of analysis	COB-2	Dr. Vaidyanathan	Level 3
		10,03,21		for frames with	CO-2,3,4	(pg.419 -423) vol2	
		<u> </u>		lateral translation of joints			
	23	21/09/21	1	Kani's method of analysis	COB-2	Dr. Vaidyanathan	Level 3
		' '		for frames with	CO-2,3,4	(pg.423 -430) vol2	
				lateral translation of joints	000		
	24	21/09/21	1	Kani's method of analysis	COB-2	Dr. Vaidyanathan	Level 3
				for frames with	CO-2,3,4	(pg.430 -440) vol2	
			1	lateral translation of joints	COD 2 CO C	D., M., 41	T 10
	25	05/10/21	1	ntroduction on approximate methods	COB-3 ,CO-5		Level 3
	23			nu oduction on approximate methods		(pg.382-385) Vol 2	
		0E /10/21	1		COB-3,CO-	Dr.Muthu	Level 3
	26	05/10/21	1	Cantilever method	COD-3,CO-	(pg.385-389)	Level 3
				Canado of monod		Vol 2	
		09/10/21	1		COB-3,CO-5		Level 3
	27	05, 10, 21	_	Cantilever method		(pg.389-440)	20,013
				1		Vol 2	1

3	28	09/10/21	1	Cantilever method	COB-3,CO-5	Dr.Muthu (pg.389-440) Vol 2	Level 3
	29	15/10/21	1	Portal method	COB-3,CO-5	Dr.Muthu (pg.440-450) Vol 2	Level 3
	30	15/10/21	1	Portal method	COB-3,CO-5	Dr.Muthu (pg.440-450) Vol 2	Level 3
	31	19/10/21	1		COB-3,CO-5	Dr.Muthu (pg.472-517) Vol 2	Level 3
	32	19/10/21	1		COB-3,CO-5	Dr.Muthu (pg.472-517) Vol 2	Level 3
	33	23/10/21	1	Substitute frame method	COB-3,CO-5	Dr.Muthu (pg.517-527) Vol 2	Level 3
	34	23/10/21	1	Substitute frame method	COB-3,CO-5	Dr.Muthu (pg.517-527) Vol 2	Level 3
	35	26/10/21	1	Introduction -Different approaches to Matrix methods of analysis	COB-4,CO-5	Dr.Vaidyanathan (pg.269-270)vol2	Level 3
	36	26/10/21	1	Static and Kinematic inderminancy	COB-4,CO-5	Dr. Vaidyanathan (pg.271) vol2	Level 3
4	37	30/10/21	1	methods for beams	COB-4,CO-4	Dr. Vaidyanathan (pg.271-287) vol2	Level 3
	38	30/10/21	1	Flexibility matrix methods for beams	COB-4CO4	Dr. Vaidyanathan (pg. 288-289) vol 2	Level 3
	39	02/11/21	1	ibility matrix methods for simple fra	COB-4,CO-5	Dr.Vaidyanathan (pg.290-292) vol2	Level 3
	40	02/11/21	1	ibility matrix methods for simple fra	COB-4,CO-4	Dr. Vaidyanathan (pg.292-304) vol2	Level 3
	41	04/11/21	1	Stiffness matrix methods for beams	COB-4,CO-4	Dr. Vaidyanathan (pg. 305-314) vol2	Level 3
	42	06/11/21	1	Stiffness matrix methods for beams	COB-4,CO-5	Dr. Vaidyanathan (pg.305-314) vol2	Level 3
	43	06/11/21	1	Stiffness matrix methods for simple frames	COB-4,CO4	Dr. Vaidyanathan (pg.315-321) vol2	Level 3
	44	09/11/21	1	Introduction for plastic analysis	COB-5,CO-5	B.C.Punmai (pg.no.557-563)	Level 3
	45	10/11/21	1	Ductility- Ultimate Load	COB-5,CO-4	B.C.Punmai (pg.no.563-574)	Level 3
	46	13/11/21	1	Plastic hinges and Shape factors for various sections	COB-5,CO-5	B.C.Punmai (pg.no.566-573)	Level 3
5	47	16/11/21	1	moment-curvature relationships	COB-5,CO-4	B.C.Punmai. (pg.no.566-573)	Level 3
	48	20/11/21	1	Upper and Lower bound theorems	COB-5,CO-5	B.C.Punmai. (pg.no.576-578)	Level 3
	49	23/11/21	1	Plastic analysis of indeterminate beams	COB-5,CO-5	B.C.Punmai (pg.no.576-578).	Level 3

	27/11/21	1	, , , , , , , , , , , , , , , , , , , ,	COB-5,CO-4	B.C.Punmai.	Level 3
50	' '		cantilever, Fixed beam,		(pg.no.576-578).	
			continuous beam		,	
51	30/11/21	1	is of propped cantilever, Fixed beam	COB-5,CO-4	B.C.Punmai.	Level 3
31			beam		(pg.no.575-576).	
52	2/12/21	1	Dontal survey machanics	COB-5,CO-4	B.C.Punmai.	Level 3
32			Portal survey mechanics		(pg.no.578-581).	
53	4/12/21	1	Portal survey mechanics	COB-5,CO-5	B.C.Punmai.	Level 3
33					(pg.no.578-581).	

Signature of HOD	Signature of faculty
Date:	Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS COURSE PLAN

Academic Year : 2021-22

Semester : I

Name of the Program: B.Tech CIVIL Year::III Section:B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code:GR18A3001

Name of the Faculty: SP RAJU Dept.: CIVIL ENGINEERING

Designation: ASSISTANT PROFESSOR

I I id	Lesson	Date	No of	Topics / Sub - Topics	Objective &	References (Text Book,	Bloom's Knowledge
Unit	No.		Perio d		Outcome Nos.	Journal) Page Nos.:to	levels
	1.	16/08/21	1	Introduction –determinate structural analysis	COB-1 CO-1	Vazirani&Ratwan i (pg.1-2) vol 2	Level 2
	2.	19/08/21	1	Indeterminate structural analysis	COB-1 CO-1	Vazirani &Ratwani (pg-3 - 11) vol 2	Level 2
	3.	21/08/21	1	Indeterminate structural analysis	COB-1 CO-1	Vazirani &Ratwani (pg. 3 -11) vol 2	Level 2
	4.	23/08/21	1	Application Of Moment distribution method for symmetrical frames	COB-1 CO-1	Vazirani &Ratwani (pg. 12 -31) vol 2	Level 2
1	5.	26/08/21	1	Application of Moment distribution method to frames with inclined members	COB-1 CO-1	Vazirani &Ratwani (pg. 12 -31) vol 2	Level 2
	6	28/08/21	1	Application of Moment distribution method to frames with inclined members	COB-1 CO-1	Vazirani &Ratwani (pg. 12 -31) vol 2	Level 2
	7	28/08/21	1	Application of Moment distribution method to frames with inclined members	COB-1 CO-1	Vazirani &Ratwani (pg. 12 -31) vol 2	Level 2
	8	02/09/21	1	Application of Moment distribution method to frames with inclined members	COB-1 CO-1	Vazirani &Ratwani (pg. 12 -31) vol 2	Level 2

	9	02/09/21	1	Application of Moment distribution	COb-1	Vazirani	Levels 2&3
				method to frames with inclined members	CO-1	&Ratwani	
	10				G0G 1	(pg. 150) vol 2	Y 1 202
	10	04/09/21	1	Application of Moment distribution method	COC-1	Vazirani	Levels 2&3
				for antisymmetrical frames	CO-1	&Ratwani	
				Tor and symmetrical frames		(pg. 213-258) vol 2	
	11		1	Application of Moment distribution method	COB-1	Vazirani	Levels 2&3
		04/09/21		for antisymmetrical frames	CO-1	&Ratwani	
				Tor unusymmetrear frames		(pg. 213-258) vol 2	
	12	07/09/21	1	Kani's method of analysis	COB-2	Dr. Vaidyanathan	Level 2
		, , , , ,		for continuous beams	CO-2	(pg.48)	
						Vol-1	
	13	07/09/21	1	Kani's method of analysis	COB-2	Dr. Vaidyanathan	Level 2
				for continuous beams	CO-2,3	(pg.48)Vol-1	
	14	08/09/21	1	Kani's method of analysis	COB-2	Vazirani &Ratwani	Level 2
	1.5		1	for continuous beams	CO-2,3,4	(pg.338 -345) vol 2	1 12
	15	08/09/21	1	Kani's method of analysis	COB-2	Dr. Vaidyanathan	Level 2
	1.0	00/00/04	1	for continuous beams Kani's method of analysis	CO-2,3,4 COB-2	(pg.80 -99) vol 1 Vazirani & Ratwani	Level 3
	16	09/09/21	1	for continuous beams	COB-2 CO-2,3,4	(pg.345 -358) vol 2	Level 3
				with support settlement	CO-2,3,4	(pg.545 -556) voi 2	
	17	09/09/21	1	Kani's method of analysis	COB-2	Dr. Vaidyanathan	Level 3
	17	09/09/21		for continuous beams	CO-2,3,4	(pg.141 -176) vol 1	Lever 3
				with support settlement	2,0,1	(170) (011	
	18	10/09/21	1	Kani's method of analysis	COB-2	Vazirani & Ratwani	Level 3
		10/03/21		for continuous beams	CO-2,3,4	(pg.415-422) vol 2	
				with support settlement		,	
	19	14/09/21	1	Kani's method of analysis for frames		Dr. Vaidyanathan	Level 3
		, ,		without lateral	CO-2,3,4	(pg.176 -213) vol 1	
				translation of joints			
2	20	14/09/21	1	Kani's method of analysis for frames		Vazirani & Ratwani	Level 3
2				without lateral	CO-2,3,4	(pg.437-452) vol 2	
			-	translation of joints	GOD 4	D 11 11	7 10
	21	18/09/21	1	Kani's method of analysis for frames		Dr. Vaidyanathan	Level 3
				without lateral	CO-2,3,4	(pg.405 -418) vol 1	
	22	40/00/04	1	translation of joints Kani's method of analysis	COB-2	Dr. Vaidyanathan	Level 3
		18/09/21	1	for frames with	COB-2 CO-2,3,4	(pg.419 -423) vol2	LCVEI 3
				lateral translation of joints	2,5,4	(P6.11) 423) VOI2	
	23	21/09/21	1	Kani's method of analysis	COB-2	Dr. Vaidyanathan	Level 3
		21/09/21	•	for frames with	CO-2,3,4	(pg.423 -430) vol2	20.013
				lateral translation of joints	7- 7-	4.0	
	24	21/09/21	1	Kani's method of analysis	COB-2	Dr. Vaidyanathan	Level 3
		,,		for frames with	CO-2,3,4	(pg.430 -440) vol2	
	<u> </u>			lateral translation of joints			
		05/10/21	1		COB-3 ,CO-5		Level 3
	25	, -,		ntroduction on approximate methods		(pg.382-385)	
						Vol 2	
		05/10/21	1		COB-3,CO-		Level 3
	26			Cantilever method		(pg.385-389)	
			4		COD 2 CO 7	Vol 2	Y 10
	27	09/10/21	1	Contileur von de 1	COB-3,CO-5		Level 3
	27			Cantilever method		(pg.389-440)	
						Vol 2	

3	28	09/10/21	1	Cantilever method	COB-3,CO-5	Dr.Muthu (pg.389-440) Vol 2	Level 3
	29	15/10/21	1	Portal method	COB-3,CO-5	Dr.Muthu (pg.440-450) Vol 2	Level 3
	30	15/10/21	1	Portal method	COB-3,CO-5	Dr.Muthu (pg.440-450) Vol 2	Level 3
	31	19/10/21	1		COB-3,CO-5	Dr.Muthu (pg.472-517) Vol 2	Level 3
	32	19/10/21	1		COB-3,CO-5	Dr.Muthu (pg.472-517) Vol 2	Level 3
	33	23/10/21	1	Substitute frame method	COB-3,CO-5	Dr.Muthu (pg.517-527) Vol 2	Level 3
	34	23/10/21	1	Substitute frame method	COB-3,CO-5	Dr.Muthu (pg.517-527) Vol 2	Level 3
	35	26/10/21	1	Introduction -Different approaches to Matrix methods of analysis	COB-4,CO-5	Dr.Vaidyanathan (pg.269-270)vol2	Level 3
	36	26/10/21	1	Static and Kinematic inderminancy	COB-4,CO-5	Dr. Vaidyanathan (pg.271) vol2	Level 3
4	37	30/10/21	1	methods for beams	COB-4,CO-4	Dr. Vaidyanathan (pg.271-287) vol2	Level 3
	38	30/10/21	1	Flexibility matrix methods for beams	COB-4CO4	Dr. Vaidyanathan (pg. 288-289) vol 2	Level 3
	39	02/11/21	1	ibility matrix methods for simple fra	COB-4,CO-5	Dr.Vaidyanathan (pg.290-292) vol2	Level 3
	40	02/11/21	1	ibility matrix methods for simple fra	COB-4,CO-4	Dr. Vaidyanathan (pg.292-304) vol2	Level 3
	41	04/11/21	1	Stiffness matrix methods for beams	COB-4,CO-4	Dr. Vaidyanathan (pg. 305-314) vol2	Level 3
	42	06/11/21	1	Stiffness matrix methods for beams	COB-4,CO-5	Dr. Vaidyanathan (pg.305-314) vol2	Level 3
	43	06/11/21	1	Stiffness matrix methods for simple frames	COB-4,CO4	Dr. Vaidyanathan (pg.315-321) vol2	Level 3
	44	09/11/21	1	Introduction for plastic analysis	COB-5,CO-5	B.C.Punmai (pg.no.557-563)	Level 3
	45	10/11/21	1	Ductility- Ultimate Load	COB-5,CO-4	B.C.Punmai (pg.no.563-574)	Level 3
	46	13/11/21	1	Plastic hinges and Shape factors for various sections	COB-5,CO-5	B.C.Punmai (pg.no.566-573)	Level 3
5	47	16/11/21	1	moment-curvature relationships	COB-5,CO-4	B.C.Punmai. (pg.no.566-573)	Level 3
	48	20/11/21	1	Upper and Lower bound theorems	COB-5,CO-5	B.C.Punmai. (pg.no.576-578)	Level 3
	49	23/11/21	1	Plastic analysis of indeterminate beams	COB-5,CO-5	B.C.Punmai (pg.no.576-578).	Level 3

	27/11/21	1	, , , , , , , , , , , , , , , , , , , ,	COB-5,CO-4	B.C.Punmai.	Level 3
50	' '		cantilever, Fixed beam,		(pg.no.576-578).	
			continuous beam		,	
51	30/11/21	1	is of propped cantilever, Fixed beam	COB-5,CO-4	B.C.Punmai.	Level 3
31			beam		(pg.no.575-576).	
52	2/12/21	1	Dontal survey machanics	COB-5,CO-4	B.C.Punmai.	Level 3
32			Portal survey mechanics		(pg.no.578-581).	
53	4/12/21	1	Portal survey mechanics	COB-5,CO-5	B.C.Punmai.	Level 3
33					(pg.no.578-581).	

Signature of HOD	Signature of faculty
Date:	Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS COURSE PLAN

Academic Year : 2021-22

Semester : I

Name of the Program: B.Tech CIVIL Year::III Section: A

Course/Subject: STRUCTURAL ANALYSIS-II Course Code:GR18A3001

Name of the Faculty: SP RAJU Dept.: CIVIL ENGINEERING

Designation: ASSISTANT PROFESSOR

	Lesson	Date	No of	Topics / Sub - Topics	Objecti ve &	References (Text Book,	Bloom's Knowledge
Unit	No.	2 440	Peri	Topics / Suc Topics	Outcom	Journal)	levels
			od		e	Page Nos.:to	
					Nos.		
		16/08/21	1	Introduction –determinate	COB-1	Vazirani&Ratwani	Level 2
	1.			structural analysis	CO-1	(pg.1-2) vol 2	
		19/08/2	1	Indeterminate structural analysis	COB-1	Vazirani &Ratwani	Level 2
	2.	1		indeterninate structural analysis	CO-1	(pg-3 -11) vol 2	
		21/08/2	1		COB-1	Vazirani &Ratwani	Level 2
	3.	1		Indeterminate structural analysis	CO-1	(pg. 3 -11) vol 2	
		23/08/2	1	Application	COB-1	Vazirani &Ratwani	Level 2
	4.	1		Of Moment distribution method for symmetrical frames	CO-1	(pg. 12 -31) vol 2	
		26/08/2	1	Application of Moment distribution	COB-1	Vazirani &Ratwani	Level 2
	5.	1		method	CO-1	(pg. 12 -31) vol 2	
				to frames with inclined members			
1	6	28/08/21	1	Application of Moment distribution method	COB-1	Vazirani &Ratwani	Level 2
				to frames with inclined members	CO-1	(pg. 12 -31) vol 2	
	7	28/08/2	1	Application of Moment distribution	COB-1	Vazirani &Ratwani	Level 2
		1		method	CO-1	(pg. 12 -31) vol 2	
				to frames with inclined members			
		02/09/21	1	Application of Moment distribution method	COB-1	Vazirani &Ratwani	Level 2
	8			to frames with inclined members	CO-1	(pg. 12 -31) vol 2	
	9	02/09/2	1	Application of Moment distribution	COb-1	Vazirani &Ratwani	Levels 2&3
		1		method	CO-1	(pg. 150) vol 2	
			l				

				to frames with inclined members			
	10	04/09/2	1	Application of Moment distribution method for antisymmetrical frames	COC-1 CO-1	Vazirani &Ratwani (pg. 213-258) vol 2	Levels 2&3
	11	04/09/21	1	Application of Moment distribution method for antisymmetrical frames	COB-1 CO-1	Vazirani &Ratwani (pg. 213-258) vol 2	Levels 2&3
	12	07/09/2 1	1	Kani's method of analysis for continuous beams	COB-2 CO-2	Dr.Vaidyanathan (pg.48) Vol-1	Level 2
	13	07/09/2 1	1	Kani's method of analysis for continuous beams	COB-2 CO-2,3	Dr.Vaidyanathan (pg.48)Vol-1	Level 2
	14	08/09/2 1	1	Kani's method of analysis for continuous beams	COB-2 CO-2,3,4	Vazirani &Ratwani (pg.338 -345) vol 2	Level 2
	15	08/09/2 1	1	Kani's method of analysis for continuous beams	COB-2 CO-2,3,4	Dr.Vaidyanathan (pg.80 -99) vol 1	Level 2
	16	09/09/2	1	Kani's method of analysis for continuous beams with support settlement	COB-2 CO-2,3,4	Vazirani & Ratwani (pg.345 -358) vol 2	Level 3
	17	09/09/2	1	Kani's method of analysis for continuous beams with support settlement	COB-2 CO-2,3,4	Dr. Vaidyanathan (pg.141 -176) vol 1	Level 3
	18	10/09/2 1	1	Kani's method of analysis for continuous beams with support settlement	COB-2 CO-2,3,4	Vazirani & Ratwani (pg.415-422) vol 2	Level 3
2	19	14/09/2 1	1	Kani's method of analysis for frames without lateral translation of joints	COB-2 CO-2,3,4	Dr. Vaidyanathan (pg. 176 -213) vol 1	Level 3
2	20	14/09/2 1	1	Kani's method of analysis for frames without lateral translation of joints	COB-2 CO-2,3,4	Vazirani & Ratwani (pg.437-452) vol 2	Level 3
	21	18/09/2 1	1	Kani's method of analysis for frames without lateral translation of joints	COB-2 CO-2,3,4	Dr. Vaidyanathan (pg. 405 - 418) vol 1	Level 3
	22	18/09/2 1	1	Kani's method of analysis for frames with lateral translation of joints	COB-2 CO-2,3,4	Dr. Vaidyanathan (pg.419 -423) vol2	Level 3
	23	21/09/2 1	1	Kani's method of analysis for frames with lateral translation of joints	COB-2 CO-2,3,4	Dr.Vaidyanathan (pg.423 -430) vol2	Level 3
	24	21/09/2 1	1	Kani's method of analysis for frames with lateral translation of joints	COB-2 CO-2,3,4	Dr. Vaidyanathan (pg.430 -440) vol2	Level 3
	25	05/10/2 1	1	ntroduction on approximate method		Dr.Muthu (pg.382-385) Vol 2	Level 3
	26	05/10/2 1	1	Cantilever method	COB-3,C	Dr.Muthu (pg.385-389) Vol 2	Level 3
	27	09/10/2 1	1	Cantilever method	COB-3,CO-	Dr.Muthu (pg.389-440) Vol 2	Level 3
3	28	09/10/2 1	1	Cantilever method	COB-3,CO-	Dr.Muthu (pg.389-440) Vol 2	Level 3

29	15/10/2	1	Portal method	COB-3,CO-	Dr.Muthu	Level 3
	1				(pg.440-450) Vol 2	Level 3
30	15/10/2 1	1	Portal method	COB-3,CO-	Dr.Muthu (pg.440-450) Vol 2	Level 3
31	19/10/2 1	1	Portal method	COB-3,CO-	Dr.Muthu (pg.472-517) Vol 2	Level 3
32	19/10/2 1	1	Substitute frame method	COB-3,CO-	Dr.Muthu (pg.472-517) Vol 2	Level 3
33	23/10/21	1	Substitute frame method	COB-3,CO-	Dr.Muthu (pg.517-527) Vol 2	Level 3
34	23/10/21	1	Substitute frame method	COB-3,CO-	Dr.Muthu (pg.517-527) Vol 2	Level 3
35	26/10/2 1	1	Introduction -Different approaches to Matrix methods of analysis	COB-4,CO	Dr. Vaidyanathan (pg. 269-270)vol2	Level 3
36	26/10/2 1	1	Static and Kinematic inderminancy		Dr.Vaidyanathan (pg.271) vol2	Level 3
37	1	1	Flexibility matrix methods for beams		(pg.271-287) vol2	Level 3
38	1	1	Flexibility matrix methods for beams		(pg.288-289) vol2	Level 3
39	02/11/2	1	ibility matrix methods for simple fra	COB-4,CO	(pg.290-292) vol2	Level 3
40	02/11/2 1	1	ibility matrix methods for simple fra	COB-4,CO-	Dr.Vaidyanathan (pg.292-304) vol2	Level 3
41	04/11/2 1	1			Dr.Vaidyanathan (pg.305-314) vol2	Level 3
42	06/11/2 1	-1-	Stiffness matrix methods for beams	COB-4,CO-	Dr.Vaidyanathan (pg.305-314) vol2	Level 3
43	06/11/2	1	for simple frames		Dr.Vaidyanathan (pg.315-321) vol2	Level 3
44	1	1	Introduction for plastic analysis		(pg.no.557-563)	Level 3
45	1	1	Ductility- Ultimate Load		(pg.no.563-574)	Level 3 Level 3
46	13/11/2	•	Plastic hinges and Shape factors for various sections		(pg.no.566-573)	
47	16/11/2 1	_1_	moment-curvature relationships	COB-5,CO-	B.C.Punmai. (pg.no.566-573)	Level 3
48	20/11/2	1	Upper and Lower bound theorems	COB-5,CO-	B.C.Punmai. (pg.no.576-578)	Level 3
	31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	30	30 1 31 19/10/2 1 32 19/10/2 1 32 1 33 23/10/21 1 34 23/10/21 1 35 26/10/2 1 36 26/10/2 1 37 30/10/2 1 38 30/10/2 1 39 1 1 40 1 1 40 1 1 41 04/11/2 1 42 1 1 43 06/11/2 1 43 06/11/2 1 44 1 1 45 1 1 46 1 1 47 1 1 47 1 1 30/11/2 1 1 44 1 1 45 1 1 46 1 1 47 1 1 47 1 1 <tr< td=""><td> 19/10/2 1 Portal method 1 </td><td> 1</td><td> 19/10/2</td></tr<>	19/10/2 1 Portal method 1	1	19/10/2

49	23/11/2 1	1	Plastic analysis of indeterminate beams	COB-5,CO-	B.C.Punmai (pg.no.576-578).	Level 3
50	27/11/2 1	1	Plastic analysis of propped cantilever, Fixed beam, continuous beam	COB-5,CO-	B.C.Punmai. (pg.no.576-578).	Level 3
51	30/11/2 1	1	is of propped cantilever, Fixed bea beam	COB-5,CO-	B.C.Punmai. (pg.no.575-576).	Level 3
52	2/12/21	1	Portal survey mechanics	COB-5,CO-	B.C.Punmai. (pg.no.578-581).	Level 3
53	4/12/21	1	Portal survey mechanics	COB-5,CO-	B.C.Punmai. (pg.no.578-581).	Level 3

Signature of HOD	
Date:	

Signature of faculty Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS

UNIT PLAN

Academic Year : 2021-22

Semester : I UNIT NO.:1
Name of the Program: B.Tech CIVIL Year::III Section: A

Course/Subject: STRUCTURAL ANALYSIS

Name of the Faculty: V SRINIVASA REDDY

Course Code: GR18A3001

Dept.: CIVIL ENGINEERING

Designation: PROFESSOR

		No. of		Objective	References	
Lesson	Date	Periods	Topics / Sub - Topics	&	(Text Book,	Bloom's
No.				Outcome	Journal)	Knowledge
				Nos.	Page Nos.:to	Levels
	16/08/21	1	Introduction –determinate	COB-2	Dr. Vaidyanathan	Level 2
1.	,,,,,,		structural analysis	CO-2	(pg.48) Vol-1	
2.	19/08/21	1	Indeterminate structural analysis	COB-2 CO-2,3	Dr. Vaidyanathan (pg.48)Vol-1	Level 2
3.	21/08/21	1	Indeterminate structural analysis	COB-2 CO-2,3,4	Vazirani &Ratwani (pg.338 -345) vol 2	Level 2
	23/08/21	1	Application	COB-2	Dr. Vaidyanathan	Level 2
4.	23/00/21	1	Of Moment distribution method for symmetrical frames	CO-2,3,4	(pg.80 -99) vol 1	
	26/08/21	1	Application of Moment distribution	COB-2	Vazirani & Ratwani	Level 3
5.	, , , ,		method	CO-2,3,4	(pg.345 -358) vol 2	
			to frames with inclined members			
6.	28/08/21	1	Application of Moment distribution	COB-2	Dr. Vaidyanathan	Level 3
			method	CO-2,3,4	(pg.141 -176) vol 1	
			to frames with inclined members			
7	28/08/21	1	Application of Moment distribution	COB-2	Vazirani & Ratwani	Level 3
			method	CO-2,3,4	(pg.415-422) vol 2	
			to frames with inclined members			
8	02/09/21	1	Application of Moment distribution	COB-2	Dr. Vaidyanathan	Level 3
			method	CO-2,3,4	(pg.176 -213) vol 1	
			to frames with inclined members			
9	02/09/21	1	Application of Moment distribution	COB-2	Vazirani & Ratwani	Level 3
			method	CO-2,3,4	(pg.437-452) vol 2	
			to frames with inclined members			
10	04/09/21	1	Application of Moment distribution	COB-2	Dr. Vaidyanathan	Level 3
			method	CO-2,3,4	(pg.405 -418) vol 1	
			for antisymmetrical frames			
11	04/09/21	1	Application of Moment distribution	COB-2	Dr. Vaidyanathan	Level 3
	01/07/21		method	CO-2,3,4	(pg.419 -423) vol2	
			for antisymmetrical frames			1

Signature of HOD

Date:

Signature of faculty

Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS

UNIT PLAN

Academic Year : 2021-22

Semester : I UNIT NO.:1 Name of the Program: B.Tech CIVIL Year::III Section: B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR18A3001
Name of the Faculty: V SRINIVASA REDDY Dept.: CIVIL ENGINEERING

Designation: PROFESSOR

Lesson No.	Date	No. of Period s	Topics / Sub - Topics	Objective & Outcome Nos.	References (Text Book, Journal) Page Nos.:to	Bloom's Knowledge Levels
1.	16/08/21	1	Introduction –determinate structural analysis	COB-2 CO-2	Dr. Vaidyanathan (pg.48) Vol-1	Level 2
2.	19/08/21	1	Indeterminate structural analysis	COB-2 CO-2,3	Dr. Vaidyanathan (pg.48)Vol-1	Level 2
3.	21/08/21	1	Indeterminate structural analysis	COB-2 CO-2,3,4	Vazirani &Ratwani (pg.338 -345) vol 2	Level 2
4.	23/08/21	1	Application Of Moment distribution method for symmetrical frames	COB-2 CO-2,3,4	Dr. Vaidyanathan (pg.80 -99) vol 1	Level 2
5.	26/08/21	1	Application of Moment distribution method to frames with inclined members	COB-2 CO-2,3,4	Vazirani & Ratwani (pg.345 -358) vol 2	Level 3
6.	28/08/21	1	Application of Moment distribution method to frames with inclined members	COB-2 CO-2,3,4	Dr.Vaidyanathan (pg.141 -176) vol 1	Level 3
7	28/08/21	1	Application of Moment distribution method to frames with inclined members	COB-2 CO-2,3,4	Vazirani & Ratwani (pg.415-422) vol 2	Level 3
8	02/09/21	1	Application of Moment distribution method to frames with inclined members	COB-2 CO-2,3,4	Dr. Vaidyanathan (pg.176 -213) vol 1	Level 3
9	02/09/21	1	Application of Moment distribution method to frames with inclined members	COB-2 CO-2,3,4	Vazirani & Ratwani (pg.437-452) vol 2	Level 3
10	04/09/21	1	Application of Moment distribution method for antisymmetrical frames	COB-2 CO-2,3,4	Dr.Vaidyanathan (pg.405 -418) vol 1	Level 3
11	04/09/21	1	Application of Moment distribution method for antisymmetrical frames	COB-2 CO-2,3,4	Dr.Vaidyanathan (pg.419 -423) vol2	Level 3

Signature of HOD Date:

Signature of faculty

Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Semester : I UNIT NO.:2 Name of the Program: B.Tech CIVIL Year::III Section: A

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR18A3001
Name of the Faculty: V SRINIVASA REDDY Dept.: CIVIL ENGINEERING

Designation: PROFESSOR

Lesson No.	Date	No. of Periods	Topics / Sub - Topics	Objective & Outcome Nos.	References (Text Book, Journal) Page Nos.:to	Bloom's Knowledge Levels
12	07/09/21	1	Kani's method of analysis for continuous beams	COB-2 CO-2	Dr.Vaidyanathan (pg.48) Vol-1	Level 2
13	07/09/21	1	Kani's method of analysis for continuous beams	COB-2 CO-2,3	Dr.Vaidyanathan (pg.48)Vol-1	Level 2
14	08/09/21	1	Kani's method of analysis for continuous beams	COB-2 CO-2,3,4	Vazirani &Ratwani (pg.338 -345) vol 2	Level 2
15	08/09/21	1	Kani's method of analysis for continuous beams	COB-2 CO-2,3,4	Dr. Vaidyanathan (pg.80 -99) vol 1	Level 2
16	09/09/21	1	Kani's method of analysis for continuous beams with support settlement	COB-2 CO-2,3,4	Vazirani & Ratwani (pg.345 -358) vol 2	Level 3
17	09/09/21	1	Kani's method of analysis for continuous beams with support settlement	COB-2 CO-2,3,4	Dr. Vaidyanathan (pg. 141 - 176) vol 1	Level 3
18	10/09/21	1	Kani's method of analysis for continuous beams with support settlement	COB-2 CO-2,3,4	Vazirani & Ratwani (pg.415-422) vol 2	Level 3
19	14/09/21	1	Kani's method of analysis for frames without lateral translation of joints	COB-2 CO-2,3,4	Dr. Vaidyanathan (pg. 176 - 213) vol 1	Level 3
20	14/09/21	1	Kani's method of analysis for frames without lateral translation of joints	COB-2 CO-2,3,4	Vazirani & Ratwani (pg.437-452) vol 2	Level 3
21	18/09/21	1	Kani's method of analysis for frames without lateral translation of joints	COB-2 CO-2,3,4	Dr. Vaidyanathan (pg.405 -418) vol 1	Level 3
22	18/09/21	1	Kani's method of analysis for frames with lateral translation of joints	COB-2 CO-2,3,4	Dr. Vaidyanathan (pg.419 -423) vol2	Level 3

23	21/09/21	1	Kani's method of analysis for frames with lateral translation of joints	COB-2 CO-2,3,4	Dr. Vaidyanathan (pg.423 -430) vol2	Level 3
24	21/09/21	1	Kani's method of analysis for frames with lateral translation of joints	COB-2 CO-2,3,4	Dr.Vaidyanathan (pg.430 -440) vol2	Level 3

Signature of HOD	Signature of faculty
Date:	Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Semester : I UNIT NO.:2
Name of the Program: B.Tech CIVIL Year::III Section: B
Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR18A3001

Name of the Faculty: V SRINIVASA REDDY Dept.: CIVIL ENGINEERING

Designation: PROFESSOR

		No. of		Objective	References	
Lesson	Date	Periods	Topics / Sub - Topics	&	(Text Book,	Bloom's
No.				Outcome	Journal)	Knowledge
				Nos.	Page Nos.:to	Levels
12	07/09/21	1	Kani's method of analysis	COB-2	Dr. Vaidyanathan	Level 2
			for continuous beams	CO-2	(pg.48)	
			77 ' 1 1 1 0 1 1	GOD 2	Vol-1	, 10
13	07/09/21	1	Kani's method of analysis	COB-2	Dr. Vaidyanathan	Level 2
			for continuous beams	CO-2,3	(pg.48)Vol-1	
14	08/09/21	1	Kani's method of analysis	COB-2	Vazirani &Ratwani	Level 2
			for continuous beams	CO-2,3,4	(pg.338 -345) vol 2	
15	08/09/21	1	Kani's method of analysis	COB-2	Dr. Vaidyanathan	Level 2
			for continuous beams	CO-2,3,4	(pg.80 -99) vol 1	
16	09/09/21	1	Kani's method of analysis	COB-2	Vazirani & Ratwani	Level 3
			for continuous beams	CO-2,3,4	(pg.345 -358) vol 2	
			with support settlement			
17	09/09/21	1	Kani's method of analysis	COB-2	Dr. Vaidyanathan	Level 3
			for continuous beams	CO-2,3,4	(pg.141 -176) vol 1	
			with support settlement			
18	10/09/21	1	Kani's method of analysis	COB-2	Vazirani & Ratwani	Level 3
			for continuous beams	CO-2,3,4	(pg.415-422) vol 2	
			with support settlement			
19	14/09/21	1	Kani's method of analysis for frames	COB-2	Dr. Vaidyanathan	Level 3
			without lateral	CO-2,3,4	(pg.176 -213) vol 1	
			translation of joints			
20	14/09/21	1	Kani's method of analysis for frames	COB-2	Vazirani & Ratwani	Level 3
			without lateral	CO-2,3,4	(pg.437-452) vol 2	
			translation of joints			
21	18/09/21	1	Kani's method of analysis for frames	COB-2	Dr. Vaidyanathan	Level 3
			without lateral	CO-2,3,4	(pg.405 -418) vol 1	
			translation of joints			
22	18/09/21	1	Kani's method of analysis	COB-2	Dr. Vaidyanathan	Level 3
			for frames with	CO-2,3,4	(pg.419 -423) vol2	
1	1	1	lateral translation of joints			

23	21/09/21	1	Kani's method of analysis for frames with lateral translation of joints	COB-2 CO-2,3,4	Dr. Vaidyanathan (pg.423 -430) vol2	Level 3
24	21/09/21	1	Kani's method of analysis for frames with lateral translation of joints	COB-2 CO-2,3,4	Dr.Vaidyanathan (pg.430 -440) vol2	Level 3

Signature of faculty Date:

Signature of HOD		
Date:		

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Semester : I UNIT NO.:3 Name of the Program: B.Tech CIVIL Year::III Section: A

Course/Subject: STRUCTURAL ANALYSIS-II Course Code:GR18A3001

Name of the Faculty: V.SRINIVASA REDDY

Dept.: CIVIL ENGINEERING

Designation: PROFESSOR

	Date	No.of	TOPICS	Objectives & Outcomes	Books/ References	Bloom's Knowledge
Lesson		periods	TOTICS	Nos.		levels
1.	05/10/21	1	Introduction on approximate methods	COB-3 ,CO-5	Dr.Muthu (pg.382-385) Vol 2	Level 3
2.	05/10/21	1	Cantilever method	COB-3,CO-5	Dr.Muthu (pg.385-389) Vol 2	Level 3
3.	09/10/21	1	Cantilever method	COB-3,CO-5	Dr.Muthu (pg.389-440) Vol 2	Level 3
4.	09/10/21	1	Cantilever method	COB-3,CO-5	Dr.Muthu (pg.389-440) Vol 2	Level 3
5.	15/10/21	1	Portal method	COB-3,CO-5	Dr.Muthu (pg.440-450) Vol 2	Level 3
6.	15/10/21	1	Portal method	COB-3,CO-5	Dr.Muthu (pg.440-450) Vol 2	Level 3
7.	19/10/21	1	Portal method	COB-3,CO-5	Dr.Muthu (pg.472-517) Vol 2	Level 3
8.	19/10/21	1	Substitute frame method	COB-3,CO-5	Dr.Muthu (pg.472-517) Vol 2	Level 3
9.	23/10/21	1	Substitute frame method	COB-3,CO-5	Dr.Muthu (pg.517-527) Vol 2	Level 3
10.	23/10/21	1	Substitute frame method	COB-3,CO-5	Dr.Muthu (pg.517-527) Vol 2	Level 3

Signature of HOD	Signature of faculty

Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Semester : I UNIT NO.:3 Name of the Program: B.Tech CIVIL Year::III Section: B

Course/Subject: STRUCTURAL ANALYSIS-II
Name of the Faculty: SP RAJU

Course Code: GR18A3001
Dept.: CIVIL ENGINEERING

Designation: ASSISTANT PROFESSOR

Lesson	Date	No.of periods	TOPICS	Objectives & Outcomes Nos.	Books/ references	Bloom's Knowledge levels
1.	05/10/21	1	Introduction on approximate methods	COB-3 ,CO-5	Dr.Muthu (pg.382-385) Vol 2	Level 3
2.	05/10/21	1	Cantilever method	COB-3,CO-5	Dr.Muthu (pg.385-389) Vol 2	Level 3
3.	09/10/21	1	Cantilever method	COB-3,CO-5	Dr.Muthu (pg.389-440) Vol 2	Level 3
4.	09/10/21	1	Cantilever method	COB-3,CO-5	Dr.Muthu (pg.389-440) Vol 2	Level 3
5.	15/10/21	1	Portal method	COB-3,CO-5	Dr.Muthu (pg.440-450) Vol 2	Level 3
6.	15/10/21	1	Portal method	COB-3,CO-5	Dr.Muthu (pg.440-450) Vol 2	Level 3
7.	19/10/21	1	Portal method	COB-3,CO-5	Dr.Muthu (pg.472-517) Vol 2	Level 3
8.	19/10/21	1	Substitute frame method	COB-3,CO-5	Dr.Muthu (pg.472-517) Vol 2	Level 3
9.	23/10/21	1	Substitute frame method	COB-3,CO-5	Dr.Muthu (pg.517-527) Vol 2	Level 3
10.	23/10/21	1	Substitute frame method	COB-3,CO-5	Dr.Muthu (pg.517-527) Vol 2	Level 3

Signature of HOD

Date:

Signature of faculty
Date:

Gokaraju Rangaraju Institute of Engineering and Technology

(Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 444

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Semester : I UNIT NO.:4
Name of the Program: B.Tech CIVIL Year::III Section: A

Course/Subject: STRUCTURAL ANALYSIS-II Course Code:GR18A3001

Name of the Faculty: V.SRINIVASA REDDY Dept.: CIVIL ENGINEERING

Designation: PROFESSOR

Lesson	Date	No.of periods	TOPICS	Objectives & Outcomes Nos.	Books/ references	Bloom's Knowledge levels
1.	26/10/21	1	Introduction -Different approaches to Matrix methods of analysis	COB-4,CO-4	Dr. Vaidyanathan (pg. 269-270) vol 2	Level 2
2.	26/10/21	1	Static and Kinematic inderminancy	COB-4,CO-4	Dr. Vaidyanathan (pg.271) vol2	Level 2
3.	30/10/21	1	Flexibility matrix methods for beams	COB-4,CO-4	Dr. Vaidyanathan (pg.271-287) vol2	Level 2,3
4.	30/10/21	1	Flexibility matrix methods for beams	COB-4,CO-4	Dr. Vaidyanathan (pg.288-289) vol2	Level 3
5.	02/11/21	1	Flexibility matrix methods for simple fra	COB-4,CO-4	Dr. Vaidyanathan (pg. 290-292) vol2	Level 3
6.	02/11/21	1	lexibility matrix methods for simple frame	COB-4,CO-4	Dr. Vaidyanathan (pg.292-304) vol2	Level 3
7.	04/11/21	1	Stiffness matrix methods for beams	COB-4,CO-4	Dr.Vaidyanathan (pg.305-314) vol2	Level 3
8.	06/11/21	1	Stiffness matrix methods for beams	COB-4,CO-4	Dr. Vaidyanathan (pg.305-314) vol2	Level 3
9.	06/11/21	1	Stiffness matrix methods for simple frames	COB-4,CO-4	Dr. Vaidyanathan (pg.315-321) vol2	Level 3

Signature of HOD	Signature of faculty
Date:	Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Semester : I UNIT NO.:4

Name of the Program: B.Tech CIVIL Year::III Section: B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR18A3001

Name of the Faculty: J.SP RAJUDept.: CIVIL ENGINEERING

Designation: ASSISTANT PROFESSOR

Lesson	Date	No.of periods	TOPICS	Objectives & Outcomes Nos.	Books/ references	Bloom's Knowledge levels
1.	26/10/21	1	Introduction -Different approaches to Matrix methods of analysis	COB-4,CO-4	Dr. Vaidyanathan (pg. 269-270)vol2	Level 2
2.	26/10/21	1	Static and Kinematic inderminancy	COB-4,CO-4	Dr. Vaidyanathan (pg. 271) vol 2	Level 2
3.	30/10/21	1	Flexibility matrix methods for beams	COB-4,CO-4	Dr.Vaidyanathan (pg.271-287) vol2	Level 2,3
4.	30/10/21	1	Flexibility matrix methods for beams	COB-4,CO-4	Dr.Vaidyanathan (pg.288-289) vol2	Level 3
5.	02/11/21	1	Flexibility matrix methods for simple frames	COB-4,CO-4	Dr. Vaidyanathan (pg. 290-292) vol2	Level 3
6.	02/11/21	1	Flexibility matrix methods for simple frames	COB-4,CO-4	Dr.Vaidyanathan (pg.292-304) vol2	Level 3
7.	04/11/21	1	Stiffness matrix methods for beams	COB-4,CO-4	Dr. Vaidyanathan (pg.305-314) vol2	Level 3
8.	06/11/21	1	Stiffness matrix methods for beams	COB-4,CO-4	Dr.Vaidyanathan (pg.305-314) vol2	Level 3
9.	06/11/21	1	Stiffness matrix methods for simple frames	COB-4,CO-4	Dr.Vaidyanathan (pg.315-321) vol2	Level 3

Signature of HOD	Signature of faculty

Date: Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS

UNIT PLAN

Academic Year : 2021-22

Semester : I UNIT NO.:5

Name of the Program: B.Tech CIVIL Year::III Section: A

Course/Subject: STRUCTURAL ANALYSIS-IICourse Code:GR18A3001

Name of the Faculty: V.SRINIVASA REDDY Dept.: CIVIL ENGINEERING

Designation: PROFESSOR

Lesson	Date	No.of periods	TOPICS	Objectives & Outcomes Nos.	Books/ References Page nos	Bloom's Knowledge levels
1.	09/11/21	1	Introduction for plastic analysis	COB-5,CO-5	B.C.Punmai (pg.no.557-563)	Level 3
2.	10/11/21	1	Ductility- Ultimate Load	COB-5,CO-5	B.C.Punmai (pg.no.563-574)	Level 3
3.	13/11/21	1	Plastic hinges and Shape factors for various sections	COB-5,CO-5	B.C.Punmai (pg.no.566-573)	Level 3
4.	16/11/21	1	moment-curvature relationships	COB-5,CO-5	B.C.Punmai. (pg.no.566-573)	Level 3
5.	20/11/21	1	Upper and Lower bound theorems	COB-5,CO-5	B.C.Punmai. (pg.no.576-578)	Level 3
6.	23/11/21	1	Plastic analysis of indeterminate beams	COB-5,CO-5	B.C.Punmai (pg.no.576-578).	Level 3
7.	27/11/21	1	Plastic analysis of propped cantilever, Fixed beam, continuous beam	COB-5,CO-5	B.C.Punmai. (pg.no.576-578).	Level 3
8.	30/11/21	1	ysis of propped cantilever, Fixed beam, conti	COB-5,CO-5	B.C.Punmai. (pg.no.575-576).	Level 3
9.	2/12/21	1	Portal survey mechanics	COB-5,CO-5	B.C.Punmai. (pg.no.578-581).	Level 3
10.	4/12/21	1	Portal survey mechanics	COB-5,CO-5	B.C.Punmai. (pg.no.578-581).	Level 3

Signature of HOD

Signature of faculty Date:

Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Course Code: GR18A3001

SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22

Semester : I UNIT NO.:5

Name of the Program: B.Tech CIVIL Year::III Section: B

Course/Subject: ADVANCED STRUCTURAL ANALYSIS

Name of the Faculty:SP RAJU

Dept.: CIVIL ENGINEERING

Designation: ASSISTANT PROFESSOR

Lesson	Date	No.of periods	TOPICS	Objectives & Outcomes Nos.	Books/ references	Blossom's Knowledge levels
1.	09/11/21	1	Introduction for plastic analysis	COB-5,CO-5	B.C.Punmai (pg.no.557-563)	Level 3
2.	10/11/21	1	Ductility- Ultimate Load	COB-5,CO-5	B.C.Punmai (pg.no.563-574)	Level 3
3.	13/11/21	1	Plastic hinges and Shape factors for various sections	COB-5,CO-5	B.C.Punmai (pg.no.566-573)	Level 3
4.	16/11/21	1	moment-curvature relationships	COB-5,CO-5	B.C.Punmai. (pg.no.566-573)	Level 3
5.	20/11/21	1	Upper and Lower bound theorems	COB-5,CO-5	B.C.Punmai. (pg.no.576-578)	Level 3
6.	23/11/21	1	Plastic analysis of indeterminate beams	COB-5,CO-5	B.C.Punmai (pg.no.576-578).	Level 3
7.	27/11/21	1	Plastic analysis of propped cantilever, Fixed beam, continuous beam	COB-5,CO-5	B.C.Punmai. (pg.no.576-578).	Level 3
8.	30/11/21	1	ysis of propped cantilever, Fixed beam, conti	COB-5,CO-5	B.C.Punmai. (pg.no.575-576).	Level 3
9.	2/12/21	1	Portal survey mechanics	COB-5,CO-5	B.C.Punmai. (pg.no.578-581).	Level 3
10.	4/12/21	1	Portal survey mechanics	COB-5,CO-5	B.C.Punmai. (pg.no.578-581).	Level 3

Signature of HOD	Signature of faculty

Date: Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 16-08-2021

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR18A3001

Name of the Faculty: V.SRINIVASA REDDY & SP RAJU V

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 1 Duration of Lesson: 45 mins

Lesson Title: Introduction -MDM

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Analysis of frames by MDM
- 2. Analysis of Inclind legframes by MDM

TEACHING AIDS : b

: books (Vazirani and Ratwani),googleimages.com, white board &marker

i) Types of Rigid joint, pin jointed, Hybrid structures-in 1D, 2D& 3D.

ii)Practical examples on Rigid joint,pin jointed,Hybrid structures.

Assignment / Questions: Explain the types of structures in detail.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 19-08-2021				
Semester	: I	Dept.: CIVIL ENGINEERING				
Name of the Program: B.Tech (CIVIL	Year: III	I Section: A,B			
Course/Subject: STRUCTURA	L ANALYSIS-II		Course Code: GR18A3001			
Name of the Faculty: V.SRINIV	ASA REDDY &	SP RAJU	J			
Designation: PROFESSOR & A	ASSISTANT PRO	FESSOR	2			
Lesson No: 2 Duration of Lesson: 45mins Lesson Title: Indeterminate structural analysis						
INSTRUCTIONAL/LESSON O	BJECTIVES:					
On completion of this lesson the	student shall be a	ble to:				
1.Identify the methods of struct	ural analysis and it	ts practica	al applications.			
TEACHING AIDS : book TEACHING POINTS	s (Vazirani and Ra	atwani),go	oogleimages.com,white board ▮			
i)Methods of analysis.						
ii)Practical examples.						
Assignment /Questions: Explain	in detail the indet	erminate 1	methods of structural analysis.			

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date: 21-08-2021					
Semester	: I	Dept.: CIVIL ENGINEERING					
Name of the Program: B.Tech Cl	IVIL	Year: III	Section: A,B				
Course/Subject: STRUCTURAL	ANALYSIS-II	Course Code: GR	18A3001				
Name of the Faculty: V.SRINIV. Designation: PROFESSOR & A							
Lesson No: 3 Duration of Lesson: 45mins Lesson Title: ANALYSIS OF CONTINUOUS BEAMS BY MDM INSTRUCTIONAL/LESSON OBJECTIVES: On completion of this lesson the student shall be able to: 1.Identify the methods of structural analysis and its practical applications TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,white board ▮ TEACHING POINTS							
i)Methods of analysis. ii)Practical Applications.							
Assignment/Questions:							
Explain the types of Indeterminate structural analysis							

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 23-08-2021

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year:III Section: A,B,C

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY & SP RAJU Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 4 Duration of Lesson: 45 mins

Lesson Title: Application Of Moment distribution method for symmetrical frames

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Apply the moment distribution method for the symmetrical frames.
- 2. Develop and derive the shear equations.

TEACHING AIDS : books(Vazirani and Ratwani), white board &marker

TEACHING POINTS

Symmetrical frames-Slope deflection method-shear equations-fixed end moments-Slope deflection equations-Final moments-BMD-SFD

ii)Practical Applications

Assignment / Questions:

1. . Solve the single bay single storey frame with Udl of 12~KN/m on the beam by moment distribution method and draw the BMD

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 23-08-2021

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year:III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY & SP RAJU Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 4 Duration of Lesson: 45 mins

Lesson Title: Application Of Moment distribution method for symmetrical frames

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Apply the moment distribution method for the symmetrical frames.
- 2. Develop and derive the shear equations.

TEACHING AIDS : books(Vazirani and Ratwani), white board &marker

TEACHING POINTS

Symmetrical frames-Slope deflection method-shear equations-fixed end moments-Slope deflection equations-Final moments-BMD-SFD

ii)Practical Applications

Assignment / Questions:

1. . Solve the single bay single storey frame with Udl of 12~KN/m on the beam by moment distribution method and draw the BMD

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 28-08-2021

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year:III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR18A3001

Name of the Faculty: V.SRINIVASA REDDY & SP RAJU

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 6 Duration of Lesson: 45mins

Lesson Title: Application of Moment distribution method to frames with inclined members

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to: Find BM and SF

TEACHING AIDS: books(Vazirani and Ratwani), googleimages.com, white board &marker

TEACHING POINTS

- 1.DISTRIBUTION FACTORS
- 2.BM FORMULAES

Assignment / Questions:

- 1. ANALYSE THE GIVEN INCLIND FRAME
- 2. ANALYSE THE GIVEN INCLIND FRAME

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 28-08-2021

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year:III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR18A3001

Name of the Faculty: V.SRINIVASA REDDY & SP RAJU Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 7 Duration of Lesson: 45mins

Lesson Title: Application of Moment distribution metho to frames with inclined members

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to: : Find BM and SF

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com, white board &marker

TEACHING POINTS

- 1. DISTRIBUTION FACTORS
- 2.BM FORMULAES

Assignment / Questions:

- 1. ANALYSE THE GIVEN INCLIND FRAME
- 2. ANALYSE THE GIVEN INCLIND FRAME

SIGNATURE

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 2-09-2021

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year:III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS Course Code: GR18A3001

Name of the Faculty: V.SRINIVASA REDDY & SP RAJU Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 8 Duration of Lesson: 45mins

Lesson Title: Application of Moment distribution metho to frames with inclined members

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to: Find BM and SF

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com, white board &marker

TEACHING POINTS

- 1.DISTRIBUTION FACTORS
- 2.BM FORMULAES

Assignment / Questions:

- . 1.ANALYSE THE GIVEN INCLIND FRAME
- 2. ANALYSE THE GIVEN INCLIND FRAME

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22	Date:2/09/2021				
Semester	: I	Dept.: CIVIL ENGINEERING				
Name of the Program: B.Tech	CIVIL	Year:III	Section: A,B			
Course/Subject: STRUCTUF	RAL ANALYSIS-II	Course Cod	le: GR18A3001			
Name of the Faculty: V.SRINIVASA REDDY &SP RAJU						
Designation: PROFESSOR&	ASSISTANT PROF	ESSOR				
Lesson No: 9 Duration of Lesson: 45mins						
Lesson Title: Application of M	Ioment distribution n	netho to frame	s with inclined members			
INSTRUCTIONAL/LESSON	OBJECTIVES:					
On completion of this lesson the	ne student shall be ab	ole to: Find BN	1 and SF			
TEACHING AIDS : boot TEACHING POINTS	oks(Vazirani and Rat	wani),Bhavika	atti,DR.Vaidyanathan,googleimages.com			
1.DISTRIBUTION FACTORS 2.BM FORMULAES						

1.ANALYSE THE GIVEN INCLIND FRAME . 2.ANALYSE THE GIVEN INCLIND FRAME

Assignment / Questions:

SIGNATURE OF FACULTY

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year	: 2021-22		Date: 04-9=21				
Semester	: I	Dept.: CIVIL EN	GINEERING				
Name of the Program: B.Tech	CIVIL	Year:III	Section: A,B				
Course/Subject: STRUCTURA	L ANALYSIS-II	Course Code: GI	R18A3001				
Name of the Faculty: V.SRINIV	ASA REDDY& SF	RAJU					
Designation: PROFESSOR& A	Designation: PROFESSOR& ASSISTANT PROFESSOR						
Lesson No: 10 Duration of Lesson: 45mins							
Lesson Title: Application of Moment distribution method for antisymmetrical frames							
INSTRUCTIONAL/LESSON O	BJECTIVES						
On completion of this lesson the	student shall be ab	le to:					
1.Solve simple and typical problem	ems and solve the s	way.					
TEACHING AIDS : book TEACHING POINTS .	s(Vazirani and Ratv	wani),googleimage	es.com, white board ▮				
1.Diffrece between sway and	l non sway						

Assignment / Questions:

1. Analyse the unsymmetrical frame and draw the BMD

SIGNATURE

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

: 2221-22		Date: 4-9-21				
: I	Dept.:	CIVIL ENGINEERING				
CIVIL	Year:III	Section: A,B				
L ANALYSIS-II	Course Code	: GR81A3001				
ASA REDDY & S	P RAJU					
ASSISTANT PROF	ESSOR					
Lesson No: 11 Duration of Lesson: 45mins						
nt distribution method for BJECTIVES:	or antisymmetrica	l frames				
student shall be abl	le to:					
lems and solve the	sway.					
ss(Vazirani and Ratv	vani),googleim	ages.com, white board &m	arker			
	CIVIL LANALYSIS-II ASA REDDY & SI ASSISTANT PROFI at distribution method for BJECTIVES: student shall be able lems and solve the si s(Vazirani and Raty	: I Pept.: CIVIL Year:III LANALYSIS-II Course Code ASA REDDY & SP RAJU ASSISTANT PROFESSOR Dur At distribution method for antisymmetrica BJECTIVES: student shall be able to: lems and solve the sway. s(Vazirani and Ratwani),googleim	: I Dept.: CIVIL ENGINEERING CIVIL Year:III Section: A,B L ANALYSIS-II Course Code: GR81A3001 ASA REDDY & SP RAJU ASSISTANT PROFESSOR Duration of Lesson: 45mins at distribution method for antisymmetrical frames BJECTIVES: student shall be able to: lems and solve the sway. s(Vazirani and Ratwani),googleimages.com, white board &m.			

Assignment / Questions:

1. Analyse the unsymmetrical frame and draw the SFD and BMD

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 07-9-2021

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year:III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR18A3001

Name of the Faculty: V.SRINIVASA REDDY& & SP RAJU Designation: PROFESSOR& ASSISTANT PROFESSOR

Lesson No: 12 Duration of Lesson: 45mins

Lesson Title: Kani's method of analysis for continuous beams

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Compute the final moments and draw the BMD by Kani's method for continous beams.
- 2.Relate the rotation factors and rotation contributions, resultant restraint moments which is unique

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan, white board

&marker

TEACHING POINTS

i) Fixed end moments-Distribution factors-rotation factors, resultant restrain moments-iterative process-Final moments-simply supported bending moments-Combined BMD. ii) Practical applications.

Assignment / Questions:

Solve and analyze the 3 span continous beam by kani's method. AB is 5m span with udl of 12kN/m, BC is subjected to a centre point loading of 25 KN having a span of 4m and span CD is 5m span with udl of 9kN/m.Sketch the BMD.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 07-9-2021

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year:III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY &SP RAJU

Designation: PROFESSOR& ASSISTANT PROFESSOR

Lesson No: 13 Duration of Lesson: <u>45mins</u>

Lesson Title: Kani's method of analysis for continuous beams with support settlement INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Compute the final moments and to draw the BMD by Kani's method for continous beams with support settlement based on end conditions and directions of settlement.
- 2. Relate the rotation factors and rotation contributions, resultant restraint moments which is unique.

TEACHING AIDS books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan, white board &marker

TEACHING POINTS

. i)Fixed end moments(with addition of settlement)-Distribution factors-rotation factors,resultant restrain moments-iterative process-Final moments-simply supported bending moments-Combined BMD.

ii)Practical Applications

Assignment Questions:

Questions: Compute the bending moment and shear forces for a 3 span continous beam by kani's method. AB is 5m span with udl of 15kN/m, BC is subjected to a centre point loading of 25 KN having a span of 6m,span CD is 5m span with udl of 11kN/m and span The support B sinks by 10mm and support C sinks by 5 mm.Draw BMD &SFD

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 8-9-2021

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year:III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR18A3001

Name of the Faculty: V.SRINIVASA REDDY &SP RAJU

Designation: PROFESSOR& ASSISTANT PROFESSOR

Lesson No: 14 Duration of Lesson:45 mins

Lesson Title: Kani's method of analysis for frames without lateral translation of joints

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Compute the final moments and draw the BMD by Kani's method for frames without lateral translation of joints.
- 2. Relate the rotation factors and rotation contributions, resultant restraint moments which is unique

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan, white board

&marker

TEACHING POINTS

1)Fixed end moment-Distribution factors-rotation factors, resultant restrain moments-iterative process-Final moments-simply supported bending moments-Combined BMD. ii)Practical Applications.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 8-09-2021

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year:III Section: A, B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR18A3001

Name of the Faculty: V.SRINIVASA REDDY &SP RAJU

Designation: PROFESSOR& ASSISTANT PROFESSOR

Lesson No: 15 Duration of Lesson: 45mins

Lesson Title: Kani's method of analysis for frames with lateral translation of joints

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Compute the final moments and to draw the BMD by Kani's method for frames with lateral translation of joints.
- 2. Relate the rotation factors and rotation contributions, resultant restraint moments which is unique.

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan, white board

&marker

TEACHING POINTS

)Fixed end moment-Distribution factors-rotation factors, resultant restrain moments-iterative process-Final moments-simply supported bending moments-Combined BMD.

ii)Practical applications

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 9-9-2021

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year:III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY& SP RAJU V

Designation: PROFESSOR &ASSISTANT PROFESSOR

Lesson No: 16 Duration of Lesson:45 mins

Lesson Title: Kani's method of analysis for frames with lateral translation of joints

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Relate the rotation factors and rotation contributions, resultant restraint moments which is unique.

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan, white

board &marker

TEACHING POINTS

i)analyze the given frame by kanis method with sway analisis ii)Practical examples.

Questions: Describe and derive the equations for the frames by kanis method.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 9-9-2021

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year:III Section: A,B,C

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY& SP RAJU V

Designation: PROFESSOR&& ASSISTANT PROFESSOR

Lesson No: 17 Duration of Lesson: 45mins

Lesson Title: Kani's method of analysis for continuous beams

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. .Compute the final moments and draw the BMD by Kani's method for continous beams TEACHING POINTS

i)Fixed end moments-Distribution factors-rotation factors,resultant restrain moments-iterative process-Final moments-simply supported bending moments-Combined BMD.

Assignment Questions:

1. Solve and analyze the 3 span continous beam by kani's method. AB is 5m span with udl of 12kN/m, BC is subjected to a centre point loading of 25 KN having a span of 4m and span CD is 5m span with udl of 9kN/m.Sketch the BMD

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 10-9-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year:III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY & SP RAJU V

Designation: PROFESSOR& ASSISTANT PROFESSOR

Lesson No: 18 Duration of Lesson:45 mins

Lesson Title: Kani's method of analysis for continuous beams with support settlement

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Compute the final moments and to draw the BMD by Kani's method for continous beams with support settlement based on end conditions and directions of settlement.

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan, white

board &marker

TEACHING POINTS

i)Fixed end moments(with addition of settlement)-Distribution factors-rotation factors,resultant restrain moments-iterative process-Final moments-simply supported bending moments-Combined BMD.

Questions: Compute the bending moment and shear forces for a 3 span continous beam by kani's method. AB is 5m span with udl of 15kN/m, BC is subjected to a centre point loading of 25 KN having a span of 6m,span CD is 5m span with udl of 11kN/m and span The support B sinks by 10mm and support C sinks by 5 mm.Draw BMD &SFD

.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 14-9-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year:III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY& SP RAJU V

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 19 Duration of Lesson: 45mins

Lesson Title: distribution method for anti symmetrical frames

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Apply the moment distribution method for Anti-symmetrical frames
- 2. Describe & derive the shear equations.

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr. Vaidyanathan, white board

&marker

TEACHING POINTS

 $i) Anti-Symmetrical\ frame-moment\ distribution\ method-shear\ equations-\ -- Final\ moments-BMD-SFD$

ii) Practical problems

Assignment questions:

Illustrate the Moment distribution method for anti symmetrical frames with examples.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 14-9-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY & SP RAJU V

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 20 Duration of Lesson:45 mins

Lesson Title: Kani's method of analysis for frames without lateral translation of joints

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Relate the rotation factors and rotation contributions, resultant restraint moments which is unique

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan, white

board &marker

TEACHING POINTS

)Fixed end moment-Distribution factors-rotation factors, resultant restrain moments-iterative process-Final moments-simply supported bending moments-Combined BMD. ii)Practical Applications.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 18-9-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY& J.CICI JENNIFER RAJ

Designation: PROFESSOR& ASSISTANT PROFESSOR

Lesson No: 21 Duration of Lesson:45 mins

Lesson Title: Kani's method of analysis for frames with lateral translation of joints INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

.Compute the final moments and to draw the BMD by Kani's method for frames with lateral translation of joints

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan.

TEACHING POINTS

)Fixed end moment-Distribution factors-rotation factors, resultant restrain moments-iterative process-Final moments-simply supported bending moments-Combined BMD.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 18-9-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY & SP RAJU V

Designation: PROFESSOR&& ASSISTANT PROFESSOR

Lesson No: 22 Duration of Lesson:45 mins

Lesson Title: Kani's method of analysis for continuous beams

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

Compute the final moments and draw the BMD by Kani's method for continous beams

TEACHING AIDS: books(Vazirani and Ratwani),googleimages.com,Dr. Vaidyanathan, white board

&marker

TEACHING POINTS

i)Fixed end moments-Distribution factors-rotation factors,resultant restrain moments-iterative process-Final moments-simply supported bending moments-Combined BMD.

Questions: Solve and analyze the 3 span continous beam by kani's method. AB is 5m span with udl of 12kN/m, BC is subjected to a centre point loading of 25 KN having a span of 4m and span CD is 5m span with udl of 9kN/m.Sketch the BMD

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 21-9-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS=II Course Code: GR18A3001

Name of the Faculty: V.SRINIVASA REDDY& SP RAJU

Designation: PROFESSOR&ASSISTANT PROFESSOR

Lesson No: 23 Duration of Lesson:45 mins

Lesson Title: Kani's method of analysis for continuous beams

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

Compute the final moments and draw the BMD by Kani's method for continous beams

TEACHING AIDS : books(Vazirani and Ratwani), googleimages.com,Dr.Vaidyanathan.

TEACHING POINTS

i)Fixed end moments-Distribution factors-rotation factors,resultant restrain moments-iterative process-Final moments-simply supported bending moments-Combined BMD.

Assignment Questions:

1. Solve and analyze the 3 span continous beam by kani's method. AB is 5m span with udl of 12kN/m, BC is subjected to a centre point loading of 25 KN having a span of 4m and span CD is 5m span with udl of 9kN/m.Sketch the BMD

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 21-9-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY& SP RAJU V

Designation: PROFESSOR& ASSISTANT PROFESSOR

Lesson No: 24 Duration of Lesson:45 mins

Lesson Title: Kani's method of analysis for frames with lateral translation of joints

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

Compute the final moments and to draw the BMD by Kani's method for frames with lateral translation of joints

TEACHING AIDS

: books(Vazirani and Ratwani), googleimages.com,Dr.Vaidyanathan, white

board &marker

TEACHING POINTS

. Fixed end moment-Distribution factors-rotation factors, resultant restrain moments-iterative process-Final moments-simply supported bending moments-Combined BMD.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 26-10--21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY & J.CICI JENNIFER RAJ

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 35 Duration of Lesson: 45mins

Lesson Title: Different approaches to Matrix methods of analysis

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Relate the conjugate beam method for the matrix methods of analysis.
- 2. Relate the formulae and relations of matrix flexibility method and matrix stiffness method.

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu TEACHING POINTS

- i) Introduction of matrix methods
- ii) Relation between flexibility and stiffness matrices its inverse, relations and formulae.

Assignment/Questions:

Derive the expression to show that flexibility and stiffness matrices are inverse of each other.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 26-10--21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY & J.CICI JENNIFER RAJ

Designation: PROFESSOR & ASSISTANT PROFESSOR.

Lesson No: 36 Duration of Lesson: 45mins

Lesson Title: Static and Kinematic indeterminacy

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1.Relate the application flexibility matrices in Matrix flexibility method.
- 2. Construction of matrices in terms of slopes and deflections.
- 3. Determination of Static & Kinematic indeterminacy.

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu, white board &marker

TEACHING POINTS

- i) Static indeterminacy and flexibility matrices.
- ii) Kinematic indeterminacy and flexibility matrices.

Assignment/Questions:

Find the SI of the continuous beam shown below.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 30-10-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY & J.CICI JENNIFER RAJ

Designation: PROFESSOR& ASSISTANT PROFESSOR

Lesson No: 38 Duration of Lesson: 45mins

Lesson Title: Flexibility matrix methods for beams

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Construct the flexibility matrices for indeterminate structures(simple beams)
- 2. Construct the flexibility matrices for indeterminate structures(typical beams)

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu, white board &marker

TEACHING POINTS

i)Conjugate beam method.

ii) Matrix-slope-deflection-flexibility matrices-indeterminate structures.

Assignment

Construct the matrix for the beam AB with one end A hinged and B fixed by matrix flexibility method.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 2-11--21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY & CICI JENNIFER RAJ

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 39 Duration of Lesson: 45mins

Lesson Title: Flexibility matrix methods for simple frames

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Solve the critical continuous beams by Matrix flexibility method

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu,

white board &marker TEACHING POINTS

- i) Conjugate beam method
- ii) Matrix-slope-deflection-flexibility matrices-continuous beams.

Assignment:

1. Construct flexibility matrix for the single bay frame with its supports fixed

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 2-11--21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY& J.CICI JENNIFER RAJ

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 40 Duration of Lesson: 45mins

Lesson Title: Flexibility matrix methods for simple frames

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Solve problems on simple Frames by Matrix flexibility method.
- 2. Solve problems on critical Frames by Matrix flexibility method.

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu,

white board &marker

TEACHING POINTS

- i) Conjugate beam method.
- ii) Matrix-slope-deflection-flexibility matrices-frames.

Assignment:

Apply the matrix flexibility method for a single bay single storey frame with UDL of 19 KN/m on the beam.Draw BMD.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 4-11-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY& J.CICI JENNIFER RAJ

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 41 Duration of Lesson: 45mins

Lesson Title: Stiffness matrix methods for beams

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Apply the applications of flexibility matrices in Matrix stiffness method.
- 2. Construct matrices in terms of slopes and deflections.

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu,

white board &marker TEACHING POINTS

i)Conjugate beam method.

ii) Matrix-slope-deflection-stiffness matrices.

Assignment: Cconstruct the matrix for the cantiliver beam AB with its end A fixed by Stiffness method.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 6-11--21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY& J.CICI JENNIFER RAJ

Designation: PROFESSOR& ASSISTANT PROFESSOR

Lesson No: 42 Duration of Lesson: 45mins

Lesson Title: Stiffness matrix methods for beams INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Solve the critical continuous beams by Matrix stiffness method.

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu,

white board &marker

TEACHING POINTS

- i) Conjugate beam method & matrix-slope-deflection
- ii)Stiffness matrices-continuous beams.

Assignment:

1. Construct the matrix for the 3 span continuous beam ABCD.AB is 5m span with udl of 12kN/m, BC is subjected to a centre point loading of 25 KN having a span of 4m and span CD is 5m span with udl of 9kN/m. by Matrix stiffness method.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22 Date: 6-11-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year:III Section: A,B,C

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY& J.CICI JENNIFER RAJ

Designation: PROFESSOR & & ASSISTANT PROFESSOR

Lesson No: 43 Duration of Lesson: 45mins

Lesson Title: Stiffness matrix methods for simple frames

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Analyze the simple rigid jointed Frames by Matrix stiffness method.
- 2. Analyze the critical rigid jointed Frames by Matrix stiffness method.

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu,

white board &marker TEACHING POINTS

i) Conjugate beam method-matrix-slope-deflection.

ii) Stiffness matrices-frame(rigid jointed)

Assignment/Questions:

Analyze the single bay single storey frame with UDL of 19 KN/m on the beam with the ends A,B and D fixed. by Matrix Stiffness method .

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 9-11-21

semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY J.CICI JENNIFER RAJ

Designation: PROFESSOR& ASSISTANT PROFESSOR

Lesson No: 44 Duration of Lesson: 45mins

Lesson Title: Introduction about the need of plastic analysis

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Identify the comparisons between plastic hinge and mechanical hinge

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu,

white board &marker

TEACHING POINTS

i) Assumptions made for plastic analysis of beams-mechanical hinge-plastic hinge.

Assignment: What are the assumptions made for plastic analysis of beams

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 10-11-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY &SP RAJU V

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 45 Duration of Lesson: <u>45mins</u>

Lesson Title: Introduction about the need of plastic analysis

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Identify the plastic hinges in structures.
- 2. Identify the comparisons between plastic hinge and mechanical hinge.
- 3.Explain the plastic bending of beams.

TEACHING AIDS : books(Vazirani and Ratwani), googleimages.com, Dr. Vaidyanathan, Dr. Muthu,

white board &marker

TEACHING POINTS

- i) Introduction-plastic bending of beams.
- ii) Assumptions made for plastic analysis of beams-mechanical hinge-plastic hinge.

Assignment/Questions

1. What are the assumptions made for plastic analysis of beams.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 13-11-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY &J.CICI JENNIFER RAJ

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 46 Duration of Lesson: 45mins

Lesson Title: Ductility –ultimate load

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Identify the Idealised stress strain curve.

2. Identify the ductile behavior of mild steel.

TEACHING AIDS : Books(Vazirani and

Ratwani), googleimages.com, Dr. Vaidyanathan, Dr. Muthu, white board, white board marker.

TEACHING POINTS

- i) Introduction- Ductility with illustrations-
- ii) ultimate load-examples(practical)

Assignment/Questions

1. Write a short note on ductility and ultimate load of members.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 16-11-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY & SP RAJU V Dept.:CIVIL

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 47 Duration of Lesson: 45mins

Lesson Title: Plastic hinge and Shape factors for various sections

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Identify the plastic hinges
- 2. Compute the shape factors for various sections theoretically.
- 3. Identify the shape factors for sections like T,C,I,Circular and other critical sections

TEACHING AIDS : books(Vazirani and

Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu,white board,white board marker.

TEACHING POINTS

i) shape factors for sections- T,C,I,Circular

ii)shape factors for critical sections

Assignment:

1. Find the shape factor for circular section.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 20-11-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY &J.CICI JENNIFER RAJ

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 48 Duration of Lesson: 45mins

Lesson Title: moment-curvature relationship

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1.Demonstrate the concept behind load factor theoretically and practically.
- 2. Apply the moment-curvature relationship in problems.

TEACHING AIDS : books(Vazirani and

Ratwani), googleimages.com, Dr. Vaidyanathan, Dr. Muthu, white board, white board marker.

TEACHING POINTS

i)Load factor.

ii) moment -curvature relationship (practical applications)

Assignment:

1. What is load factor? Derive the moment-curvature relationship.

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 23-11-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY&&J.CICI JENNIFER RAJ

Designation: PROFESSOR & & ASSISTANT PROFESSOR

Lesson No: 49 Duration of Lesson: 45mins

Lesson Title: Upper and Lower bound theorems INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Computation of the plastic hinges
- 2.Demonstrate the types of mechanisms.

TEACHING AIDS : books(Vazirani and

Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu,white board,white board marker.

TEACHING POINTS

1)	Upper	and	Lower	bound	t.	heorems	;

ii)Practical Applications

Assignment:

1.Demonstrate the upper and lower bound theorems.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 27-11-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY & SP RAJU V

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 50 Duration of Lesson: 45mins

Lesson Title: Plastic analysis of indeterminate beams

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Compute plastic analysis of indeterminate beams.
- 2. Manipulation of load factor and collapse loads.

TEACHING AIDS : books(Vazirani and

Ratwani), googleimages.com, Dr. Vaidyanathan, Dr. Muthu, white board, white board marker.

TEACHING POINTS

i) Plastic analysis of indeterminate beams

ii)Collapse loads.

Assignment:

1.Relate the plastic analysis of indeterminate beams with one illustrative example.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 30-11-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B,C

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY& J.CICI JENNIFER RAJ

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 51 Duration of Lesson: 45mins

Lesson Title: Plastic analysis of propped cantilever, Fixed beam, continuous beam

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Compute the plastic analysis of propped cantilever.
- 2. Ccompute the load factor and collapse load for propped cantilever

TEACHING AIDS : books(Vazirani and

Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu,white board,white board marker.

TEACHING POINTS

i)plastic analysis of propped cantiliver ii)collapse loads.

Assignment/Questions:

1. Compute the collapse load for a propped cantilever beam AB of span 10 m and UDL 15 KN/m.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date:2-12-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY& &SP RAJU V

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 52 Duration of Lesson: 45mins

Lesson Title: Plastic analysis of propped cantilever, Fixed beam, continuous beam

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Demonstrate the plastic analysis on fixed beam.
- 2. Compute the load factor and collapse load for fixed beam.

TEACHING AIDS : books(Vazirani and

Ratwani), googleimages.com, Dr. Vaidyanathan, Dr. Muthu, white board, white board marker.

TEACHING POINTS

- i) plastic analysis of fixed cantilever.
- ii) Collapse loads.

Assignment/Questions

1. Compute the collapse load for a fixed beam AB of span 12 m and UDL of 18 KN/m.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic Year : 2021-22	Date: 5-10-21
-------------------------	---------------

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY&SP RAJU

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 25 Duration of Lesson: 45mins

Lesson Title: Portal survey mechanics

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Compute the collapse load for portal frame.

2. Compute the plastic moment for portal frame.

TEACHING AIDS : books(Vazirani and

Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu,white board,white board marker.

TEACHING POINTS

i)plastic analysis of portal frame.	
ii)collapse loads.	

Assignment:

1. Compute the collapse load for the frame sin the figure.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 5-10-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B,C

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY & SP RAJU V

Designation: PROFESSOR& ASSISTANT PROFESSOR

Lesson No: 26 Duration of Lesson: 45mins

Lesson Title: Introduction about approximate methods of analysis

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1.Demonstrate the various methods of analysis
- 2.Relate the methods.
- 3.Demonstrate the practical applications of the methods.

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu,

white board &marker TEACHING POINTS

- i) Introduction- various methods of analysis-
- ii) Comparisons between the methods- practical applications-substitute frame method-cantiliver method-portal method.

Assignment:

1. Illustrate the various approximate methods of analysis with neat sketches wherever required.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

: books(Vazirani and Ratwani), googleimages.com, Dr. Vaidyanathan, Dr. Muthu,

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 9-10-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY& J.CICI JENNIFER RAJ

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 27 Duration of Lesson: 45mins

Lesson Title: Introduction on Substitute frame method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1.Demonstrate the procedure for the analysis of frames by substitute frame method.

TEACHING AIDS white board &marker

TEACHING POINTS

Modeling of building frames.

Comparisons between the methods-illustrations.-. substitute frame method

Assignment/Ouestions

1.Demonstrate the procedure for the analysis of frames by substitute frame method with neat sketches wherever required.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 9-10-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY & SP RAJU V

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 28 Duration of Lesson: 45mins

Lesson Title: example on Substitute frame method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Solve problems in Substitute frame method.

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu,

white board &marker TEACHING POINTS

i)Substitute frame method	
ii)Analysis,problems.	
, , ,	

Assignment:

1. Analyse a two bay two storey frame by Substitute frame method

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 15-10-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: Dr.V.SRINIVASA REDDY & SP RAJU V

Designation: PROFESSOR&& ASSISTANT PROFESSOR

Lesson No: 29 Duration of Lesson: 45mins

Lesson Title: example on Substitute frame method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to: 1. Solve critical problems in Substitute frame method

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu,

white board &marker

TEACHING POINTS

ii) Analysis, problems

Assignment:

1. Analyze a single bay two storey frame by Substitute frame method

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 15-10-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: Dr.V.SRINIVASA REDDY& J.CICI JENNIFER RAJ

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 30 Duration of Lesson: 45mins

Lesson Title: Introduction on Portal Method INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Employ the procedure for the analysis of frames by portal frame method
- 2. Solve problems in this topic.

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu,

white board &marker

TEACHING POINTS

i) Modeling of building frames

ii) Comparisons between the methods-illustrations.-. Portal frame method

Assignment:

1.Demonstrate the procedure for the modelling and analysis of multi-storey frames using Portal frame method

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 19-10-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY&J.CICI JENNIFER RAJ

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 31 Duration of Lesson: 45mins

Lesson Title: Introduction on Substitute frame method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1.Illustrate the concepts behind the portal frame method.
- 2. Solve problems in this topic.

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu, white board &marker

TEACHING POINTS

i)P	ort	al	frame	method	&	examples.
••\		1		1.1		

ii) Analysis, problems.

Assignment:

4. Analyze a two bay two storey frame by portal frame method

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date:19-10-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY&SP RAJU V

Designation: PROFESSOR& ASSISTANT PROFESSOR

Lesson No: 32 Duration of Lesson: 45mins

Lesson Title: example on on Portal Method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Solve simple frames using Substitute frame method
- 2. Solve moderate frames using Substitute frame method

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu,

white board &marker TEACHING POINTS

Substitute frame method-problems(simple).

Practical examples.

Assignment:

1. Analyse a single bay two storey frame by portal frame method

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 23-10-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY&&SP RAJU V

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 33 Duration of Lesson: 45mins

Lesson Title: Introduction on 86antilever method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Employ the procedure for the analysis of frames by 86antilever method.

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu,

white board &marker

TEACHING POINTS

i) Modeling of building frames.

ii) Comparisons between the methods-illustrations.-. 86antilever method

Assignment:

1.Explain the the procedure for the analysis of frames by 86antilever method with neat sketches wherever required.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 23-10-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY & SP RAJU V

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 34 Duration of Lesson: 45mins

Lesson Title: example on Cantilever method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. Solve problems in Substitute frame method.

TEACHING AIDS

: books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu,

white board &marker TEACHING POINTS

5. 87antilever method-analysis, problems.

ii)Practical examples.

Assignment:

6. Analyze a two bay two storey frame by Cantiliver method

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

LESSON PLAN

Academic **Y**ear : 2021-22 Date: 23-10-21

Semester : I Dept.: CIVIL ENGINEERING

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Course Code: GR183001

Name of the Faculty: V.SRINIVASA REDDY & SP RAJU V

Designation: PROFESSOR & ASSISTANT PROFESSOR

Lesson No: 34 Duration of Lesson: 45mins

Lesson Title: example on Substitute frame method

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

7. Solve critical problems in 88antilever method

TEACHING AIDS : books(Vazirani and Ratwani),googleimages.com,Dr.Vaidyanathan,Dr.Muthu, white board &marker TEACHING POINTS

8. Cantiliver method-analysis, problems.

ii)Practical examples.

Assignment/Questions:

9. Analyse a single bay two storey frame by Cantiliver method

Date:

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Date:

TUTORIAL SHEET

Academic Year	: 2021-22					
Semester	: I					
Name of the Program: E	3.Tech CIVIL	Year: III	Section: A,B			
Course/Subject: STRUC	CTURAL ANALYSIS-II					
Name of the Faculty: V	SRINIREDDY & SP RAJU V	Dept.: CIVII	L ENGINEERING			
Designation :	PROFESSOR&ASSISTANT PI	ROFESSOR				
This Tutorial correspond	ds to Unit No.1					
Q1Compute BMD for	the structure shown in fig.1 by	MDM method				
Q2Compute BMD for	the structure shown in fig.1 by	MDM method				
Q3Compute BMD for	the structure shown in fig.1 by	MDM method .				
Objective Nos.:COB-1						
Outcome Nos.CO-1						
Signature of HOD			Signature of faculty			

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

TUTORIAL SHEET

Semester : I

Name of the Program: B.Tech CIVIL Year: III Section: A,, B

Course/Subject: STRUCTURAL ANALYSIS-II

Name of the Faculty: SP RAJU V &V.SRINIVASA REDDY Dept.: CIVIL ENGINEERING

Designation : ASST.PROFESSOR& PROFESSOR.

This Tutorial corresponds to Unit No.2

Q1.Compute BMD for the structure shown in fig.1 by Kanis method

Q2.Compute BMD for the structure given in fig.2 by Kanis method.

Q2. Compute BMD for the structure given in fig.3 by Kani's method

Objective Nos.: COB-2

Outcome Nos.: CO-2,3,4

Signature of HOD Signature of faculty

Date: Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

TUTORIAL SHEET

Semester : I

Name of the Program: B.Tech CIVIL Year: III Section: A,B

Course/Subject: STRUCTURAL ANALYSIS-II Dept.: CIVIL ENGINEERING

Name of the Faculty: SP RAJU V & V.SRINIVASA REDDY

Designation : ASST.PROFESSOR& PROFESSOR.

This Tutorial corresponds to Unit No.3

Q1. Apply the substitute Frame method of analysis for the structure shown in fig.1

Q2. Apply the 91antilever method of analysis for the structure shown in fig.1

Q2. Apply the portal method of analysis for the structure shown in fig.1

Objective Nos.: COB-5

Outcome Nos.: CO-4

Signature of HOD Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

TUTORIAL SHEET

Academic Year	: 2021-22					
Semester	: I					
Name of the Program: B.T	Cech CIVIL	Year: III	Section:A,B			
Course/Subject: STRUCT	TURAL ANALYSIS	S-II				
Name of the Faculty: SP l	RAJU V &V.SRINI	VASA REDDY Dept.: Cl	VIL ENGINEERING			
Designation : AS	SST.PROFESSOR/	PROFESSOR				
This Tutorial corresponds to Unit No.4						
Q1.Compute the Bending moment for the structure shown in fig.1 by Matrix flexibity method.						
Q2. Compute the Bending moment for the frame shown in fig.2 by Matrix Stiffness method.						
Objective Nos.: COB-3						
Outcome Nos.:CO- 5						
Signature of HOD Date:			Signature of faculty Date:			

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Date:

TUTORIAL SHEET

Academic Year	: 2021-22		
Semester	: I		
Name of the Program: B.	Tech CIVIL	Year: III	Section:A,B
Course/Subject: STRUC	TURAL ANALYSIS-II		
Name of the Faculty: SP	RAJU V & V.SRINIVAS	A REDDY Dept.: Cl	IVIL ENGINEERING
Designation : A	ASST.PROFESSOR& PRO	OFESSOR.	
This Tutorial corresponds	s to Unit No.5		
Q1.Find the shape factor	for the section shown in f	ig.1	
Q2. Compute the collapse	e load for the structure giv	ven in fig.2	
Q2. Compute the collaps	e load for the structure gi	ven in fig.3	
Objective Nos.:COB- 4			
Outcome Nos.:CO- 4			
Signature of HOD			Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Signature of faculty

Date:

ASSIGNMENT SHEET

Academic Year : 202	21-22					
Semester :	I					
Name of the Program: B.Tech CIV	IL	Year: III	Section: A,B			
Course/Subject: STRUCTURAL A	NALYSIS-II I	Dept.: CIVIL ENGIN	IEERING			
Name of the Faculty: SP RAJU V &	v.SRINIVASA	REDDY				
Designation : ASST.PRO	FESSOR&PROFI	ESSOR				
This Assignment corresponds to Un	nit No.1					
Q1.analyse the beam by MDM						
Q2. Analyse the frame by MDM						
Objective Nos.: COB-1						
Outcome Nos.: CO-1						

Signature of HOD

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Signature of faculty

Date:

ASSIGNMENT SHEET

Academic Year	: 2021-22							
Semester	: I							
Name of the Program: B.Tec	h CIVIL	Year: III	Section: A,B					
Course/Subject: STRUCTUF	RAL ANALYSIS-II							
Name of the Faculty: SP RA	JU V &V.SRINIVASA RE	DDY Dept	.: CIVIL ENGINEERING					
Designation : ASSISTANT PROFESSOR & PROFESSOR								
This Assignment corresponds to Unit No.2								
Q1.Compute Bending mome	Q1.Compute Bending moment for the structure shown in fig.1 by Kanis method							
Q2. Compute Bending mome	ent for the structure given in	fig.2 by Kanis	method method.					
Q2. Compute Bending mome	ent for the structure given in	fig.3 by Kani's	s method					
Objective Nos.: COB-2								
Outcome Nos.: CO-2, 3, 4								

Signature of HOD

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Signature of faculty

Date:

ASSIGNMENT SHEET

Academic Year	: 2021-22						
Semester	: I						
Name of the Program: B.Tec	h CIVIL	Year: III	Section: A,B				
Course/Subject: STRUCTUI	RAL ANALYSIS-II	Dept.: CIVIL ENGI	NEERING				
Name of the Faculty: SP RA	JU V &V.SRINIVAS	A REDDY					
Designation : ASST.PROFESSOR& PROFESSOR							
This Assignment corresponds to Unit No.3							
Q1.Apply the substitute Fran	ne method for the stru	acture shown in fig.1					
Q2. Apply the Portal method	l for the structure show	wn in fig.1					
Q2. Apply the cantilever me	thod for the structure	shown in fig.1					
Objective Nos.: COB-5							
Outcome Nos.: CO-4							

Signature of HOD

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Signature of faculty

Date:

ASSIGNMENT SHEET

Academic Year : 2021-22								
Semester : I								
Name of the Program: B.Tech CIVIL	Year: III	Section: A,B						
Course/Subject: STRUCTURAL ANALYSIS-II	Dept.: CIVIL ENGI	NEERING						
Name of the Faculty : SP RAJU V &V.SRINI	VASA REDDY							
Designation : ASST.PROFESSOR&PRO	DFESSOR							
This Assignment corresponds to Unit No.4								
Q1.Develop matrices for the structure shown in fig	.1 by Matrix flexibity	method.						
Q2. Develop matrices for the structure shown in fig	g.2 by Matrix Stiffness	method.						
Objective Nos.: COB-3								
Outcome Nos.: CO-5								

Signature of HOD

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Signature of faculty

Date:

ASSIGNMENT SHEET

Academic Year	: 2021-22							
Semester	: I							
Name of the Program: B.Te	ech CIVIL	Year: III	Section:A,B					
Course/Subject: STRUCTU	JRAL ANALYSIS-II	Dept.: CIVIL ENGI	NEERING					
Name of the Faculty: SP R	AJU V & V.SRINIVAS	SA REDDY						
Designation : AS	SST.PROFESSOR& PR	OFESSOR.						
This Assignment correspon	nds to Unit No.5							
Q1.Find the shape factor for	Q1.Find the shape factor for the I-section							
Q2. Compute the collapse	load for the structure give	ven in fig.2						
Q2. Compute the collapse	load for the structure give	ven in fig.3						
.Objective Nos.: COB-4								
Outcome Nos.: CO-3								

Signature of HOD

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

EVALUATION STRATEGY

Academic Year : 2021-22

Semester : I

Name of the Program: B.TECH YEAR: III Section: A & B

Course/Subject: STRUCTURAL ANALYSIS II

Course Code:

Name of the Faculty: V SRINIVASA REDDY Dept.: CIVIL ENGG.

Designation: PROFESSOR

10. TARGET:

11. Percentage for pass: 95%

b) Percentage of class:

Total number of students ENROLLED for this course	130
Total number of students APPEARED for the exam	130
Total number of students PASSED	120
Total number of students FAILED	10

Students who secured FIRST CLASS WITH DISTINCTION ≥ 70%	30
Students who secured FIRST CLASS 60-69%	50
Students who secured PASS CLASS 40-59%	40

TOTAL PASS PERCENTAGE: 92%

12. COURSE PLAN& CONTENT DELIVERY

The course is delivered as Lectures, Lecture with a quiz Tutorials, Assignments, Group Discussion Presentations, Site Visits, Illustrative Videos, and teacher supplied class lecture handouts. In addition to classroom lectures, tutorials are also planned to help the students understand and appreciate the challenges involved in practical implementations and also understand the engineering trade-offs to made while making practical implementations.

• Fifty (50) Class room lectures were planned for each Section (Sec A and B)

- Demonstrations are held through various illustrative Videos and Web classrooms
- Assignments and Tutorial work out classes are arranged for every unit of the syllabus

13. METHOD OF EVALUATION

Continuous Assessment Examinations (MID EXAM-I, MID EXAM-II)

The department follows continuous evaluation system through assignments, projects, Mid exams (2 Nos.) and an end semester examination. The continuous academic quality assessments carried out through a peer (external) review process once in a year. The suitable feedback from Training and Placement cell is also considered. Board of studies of the department includes two external experts (one from Reputed Academic Institute and another from Industry) which advocate areas of skills and knowledge to be improved upon by the students in the context of changing situation.

Continuous Assessment Marks (Best of MID EXAM-I, MID EXAM-II) – 30 Marks

Evaluated mid answer scripts are shown to students by respective subject teachers. Based on marks obtained by the students, remedial classes are conducted by the departments for slow learners.

Assignments/Seminars

The students' progress is continuously monitored through regular assignments and practice sessions to ensure the achievement of course outcomes. All components in any program of study will be evaluated continuously through internal evaluation and external evaluation component conducted as year-end/ semester-end examination. Internal evaluation includes two components I. Mid Examinations II. Assignments. Assignments improve the continuous learning capacity of student

Five (5) marks are earmarked for assignments out of Continuous Assessment Marks (30 Marks)

Quiz

Ten (10) marks are earmarked for Quiz or Objective type questions out of Continuous Assessment Marks (30 Marks) and Ten (10) marks for Subjective type questions

Semester/End Examination

The scheme of evaluation for every subject is for 100 marks, out of this, 30 marks are earmarked for continuous internal evaluation. End Semester Exam for 70 Marks

Others

The improvements, modifications and additions to the curriculum are governed by Board of Studies (BOS) and executed on a continuous basis based on the feedback from the stakeholders and changing societal needs. The meeting of BOS is held and the faculty member will be contributing in the curriculum development along with the experts from the IIT/Industry. The student class committee meets every semester and their views are incorporated in order to improve the curriculum.

Signature of HOD	Signature of faculty
Date:	Date:

Course Objectives – Course Outcomes Relationship Matrix

Course - outcomes Course Objectives	1	2	3	4	5
Course Objectives					
1	X				
2		X	X		
3				X	
4					X
5					

Assessments in Relation to CO's and COB's

Assessments:

- 1. ASSIGNMENT
- 2. INTERNAL EXAMINATION
- 3. EXTERNAL EXAMINATION
- 4. PRACTICAL PROJECTS
- 5. VIVA

Course outcomes Assessments	1	2	3	4	5
1	X	X	X	X	X
2	X	X	X	X	X
3	X	X	X	X	X
4		X	X	X	X
5	X	X	X	X	X

Assessments - Program Educational Objectives (PEOs) Relationship matrix

Assessments:

- 1. ASSIGNMENT
- 2. INTERNAL EXAMINATION
- 3. EXTERNAL EXAMINATION
- 4. PRACTICAL PROJECTS
- 5. VIVA

PEOs	1	2	3
Assessments			
Assessments			
1	X	X	X
2	X	X	X

3	X	X	X
4	X	X	X
5	X	X	X

GR18	GR18A3001/ STRUCTURAL ANALYSIS-II													
COs/POs	A	В	C	D	E	F	G	Н	I	J	K	L	PS	O's
COS/FOS	A	В	C	ע	E	Г	G	П	1	J	V	L	1	2
Analyze various types of frames with and without sway using Moment distribution methods	Н	M		M				M	M	M		M	M	
Analyze various types of frames using Kani's methods of Analysis	Н	М		M		M		М	M	M		M		M
3. Evaluate the shear forces, bending moments and axial forces in beams, columns and at joints of multi-storey frames using approximate methods of analysis	Н	M		M		M		M	M	M		M		
4. Analyze the simple beams and frames using stiffness matrix and flexibility matrix methods of analysis.	Н	M		M	Н	M		M	M	M		M	M	
5. Apply the principles of virtual work to estimate the collapse load and plastic moment carrying capacity of simple beams and frames.	Н	М		M		M		M	M	M		M	М	

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

RUBRIC TEMPLATE

Academic Year : 2021-22

Semester : I

Name of the Program: <u>B.Tech Civil Engineering</u> Year: <u>III</u> Section: A / B

Course/Subject: Structural Analysis-II

Course Code: Sub Code: GR18A3001

Name of the Faculty: SP RAJU V & Dr. V.SRINIVASA REDDY Dept.: Civil Engineering

Designation: <u>Asst.Professor /Professor</u>

Objective: To learn design aspects of reinforced concrete structures.

Student Outcome: Learn design concepts, use of code, design of elements such as beams, columns,

footings and slabs against strength and serviceability.

			Beginning	Developing	Reflecting Development	Accomplishe d	Exemplary	Score
S. N o	Name of the Stude nt	Performance Criteria	1	2	3	4	5	
1	19241 A017 9	The level of knowledge on basic requiremen ts for design	Low level of knowledge on basic rquirement s of design	Able to discuss the basic requireme nts of design	Ability to explain the basic requiremen ts of design	Full knowledge on basic requiremen ts of design	Analysing and implement ing the knowledg e of requireme nts of design	5

s	Analysis of structural elements.	Analysis of structural elements.	structural elements.	structural elements.	Analysis of structural elements.	n of knowledg e on Analysis of structural elements.	
c k t	The level of knowledge to draw SFD and BMD	Low level of knowledge to draw SFD and BMD	Ability to discuss and to draw SFD and BMD	Ability to explain and to draw SFD and BMD	Full knowledge on to draw SFD and BMD	Analysin g and implement ing the knowledg e of to draw SFD and BMD rerage Score	5

			Beginning	Developing	Reflecting Development	Accomplishe d	Exemplary	Score
S. N o	Name of the Stude nt	Performance Criteria	1	2	3	4	5	
1	1924 1A01 61	The level of knowledge on basic requiremen ts for design The level of knowledge on Analysis of structural elements.	Low level of knowledge on basic rquirement s of design Low level of knowledge on Analysis of structural elements.	Able to discuss the basic requireme nts of design Able to discuss on Analysis of structural elements.	Ability to explain the basic requiremen ts of design Ability to explain Analysis of structural elements.	Full knowledge on basic requiremen ts of design Full knowledge on Analysis of structural elements.	Analysing and implement ing the knowledg e of requireme nts of design Analysing and application of knowledg e on Analysis of structural elements.	2

		The level of knowledge to draw SFD and BMD	Low level of knowledge to draw SFD and BMD	Ability to discuss and to draw SFD and BMD	Ability to explain and to draw SFD and BMD	Full knowledge on to draw SFD and BMD	Analysin g and implement ing the knowledg e of to draw SFD and BMD	2
			Beginning	Developing	Reflecting Development	Accomplishe d	Exemplary	Score
S. N	Name of the Stude nt	Performance Criteria	1	2	3	4	5	
	2024	The level of knowledge on basic requiremen ts for design The level of knowledge on Analysis of	Low level of knowledge on basic rquirement s of design Low level of knowledge on	Able to discuss the basic requireme nts of design Able to discuss on Analysis of	Ability to explain the basic requirements of design Ability to explain Analysis of structural	Full knowledge on basic requiremen ts of design Full knowledge on Analysis of	Analysing and implement ing the knowledg e of requirements of design Analysing and application of	3
1	5A01 30	Analysis of structural elements. The level of knowledge to draw SFD and BMD	Analysis of structural elements. Low level of knowledge to draw SFD and BMD	Ability to discuss and to draw SFD and BMD	Ability to explain and to draw SFD and BMD	Full knowledge on to draw SFD and BMD	knowledg e on Analysis of structural elements. Analysin g and implement ing the knowledg e of to draw SFD and BMD	2
						Av	erage Score	3

Course Objectives – Program Outcomes (POs) Relationship Matrix

Program -outcomes	a	b	c	d	e	f	g	h	i	j	k	1	Pso1	Pso2
Course objectives														
1	X	X		X	X	X				X			X	
2	X	X		X	X	X		X		X				X
3	X	X		X	X	X		X		X			X	
4	X	X		X	X	X		X		X			X	
5	X	X		X		X		X		X				X

Course Outcomes – Program Outcomes (POs) Relationship Matrix

Program -													Pso1	Pso2
Outcomes	a	b	c	d	e	f	g	h	i	j	k	L		
Course-Outcomes	_													
1	X	X		X	X	X				X				X
2	X	X		X	X	X		X		X				X
3	X	X		X	X	X		X		X			X	
4	X	X		X	X	X		X		X			X	
5	X	X		X		X		X		X			X	

Program Outcomes (POs) Relationship Matrix

Course: Structural analysis-II Course Code: GR18A3001

Program -Outcomes Course	a	b	С	d	e	f	g	h	i	j	k	L
Structural Analysis-II	X	X		X	X	X		X		X		

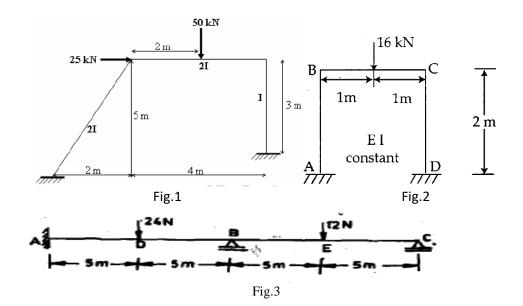
Program Educational Objectives (PEOs) – Course Outcomes [CO] Relationship Matrix

PEOs	1	2	3
Course Outcomes			
1	X	X	
2	X	X	
3	X	X	
4	X	X	
5	X	X	X

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Max Marks: 15

Department of Civil Engineering Descriptive Paper (2021-22)


III B.Tech. I Sem., I Mid-Term Examination, October 2021

Structural Analysis -II

Time: 90 Minutes

I Answer any Three Questions

Question No.		Marks	Blooms Levels*	Course Outcome
1	Analyze the frame shown in the fig1. below by Moment distribution Method and sketch the BMD	5M	BL2	CO1
2	Analyze the frame shown in the fig 2 below by Kani's Method and sketch the BMD.	5M	BL3	CO2
3	Analyze the continuous beam ABC loaded as shown in fig 3. by Kani's method, assuming EI as constant.	5M	BL2	CO3
4	Using portal method, analyze the frame shown in fig.4 for shear force, bending moment and axial force in all members. Area of each column is same, i.e. unity	5M	BL4	CO2

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Department of Civil Engineering

III B.Tech. I Sem., I Mid-Term Examination, October 2021 Structural Analysis -II

	Structural Analysis -II	
	Time: 40 min	Max. Marks: 20
-	PART-A (Answer all questions)	(10 min)
1.	Sway in portal frames may occur due to	
	$a) \ \ \text{asymmetry in geometry} \ \ b) \ \ \text{asymmetry in loading c)} \ \ \text{horizontal force}$	es d) different support conditions
2.	Total number of independent joint displacement is known as	
	a) Static indeterminacy b) degree of redundancy c) Kinematic Indete	rminacy d) Degree of Freedom
3.	Which of the following methods of structural analysis is a displacement	ent method?
	a) Slope deflection method b) Column analogy method c) Moment	distribution method d) Kani's method
4.	Carryover Moment is defined as	
	a) The moment applied at one end to cause unit slope at the support	t
	b) The additional moment applied at one end to completely resist th	e rotation caused due to external loading
	c) The moment developed or induced at one end due to a moment a	at another end
	d) The moment applied at one end to cause unit slope at another en	d
5.	When a structural member of the uniform section is subjected to a n	noment at one end only, then the
	momentrequired so as to rotate that end to produce a unit slope, is	called _
6.	a) Resistance of member b) Stiffness of member c) Capacity of member ln moment distribution method, the sum of distribution factors of all always	
7	a) Zero b) Less than 1 c) 1 d) Greater than 1	
7.	The basic assumption of Kani's method is to consider the deformation	ons caused only by
0	a) bending moments b) shear forces c) axial forces d) rotations	
8.	, ,	
0	a) self-corrective b) distributes unbalanced moments c) distributes in a self-corrective b) distributes unbalanced moments c) distributes in a self-corrective b) distributes unbalanced moments c) distributes in a self-corrective b) distributes unbalanced moments c) distributes in a self-corrective b) distributes unbalanced moments c) distributes unbalanced moments contain a self-corrective distributes unbalanced moments contain a self-corrective distributes unbalanced moments d	rotations d) approximate method
9.	Select the correct statement	
	a) Moment distribution method is self-corrective	
	b) Kani's method distributes the total joints moment at any stage	

 $10.\,$ Relation between Distribution Factor (DF) and Rotation Factor (RF)

a) RF = -0.5 \times DF b) RF = 0.5 \times DF c) RF = 1.5 \times DF d) RF = -2.5 \times DF

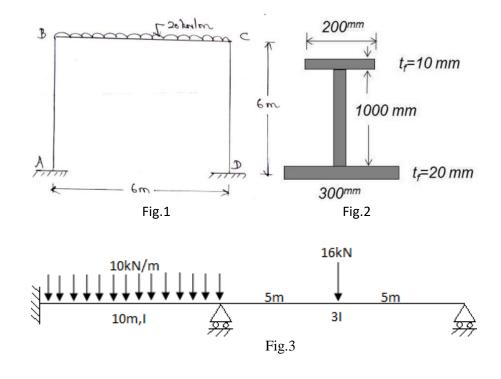
c) Kani's method distributes the unbalanced moments at the joints method

d) Moment distribution method is simple and easy to apply for sway frames

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Max Marks: 15

Department of Civil Engineering Descriptive Paper (2021-22)


III B.Tech. I Sem., II Mid-Term Examination, December 2021

Structural Analysis -II

Time: 90 Minutes

I Answer any Three Questions

Question No.		Marks	Blooms Levels*	Course Outcome
1	Analyze the frame shown in the fig.1 below using Stiffness matrix or Flexibility matrix method	5M	BL3	CO3
2	Calculate the shape factor for the given section in fig. 2 wrt. to the strong axis. Take fy=355MPa	5M	BL4	CO3
3	Find the plastic moment carrying capacity of the continuous beam loaded as shown in fig.3 below	5M	BL4	CO4
4	Find the collapse load for the portal frame loaded as shown in fig 4 . below. Take load factor as 1.5.	5M	BL5	CO5

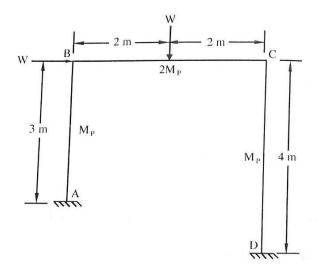


Fig.4

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Department of Civil Engineering Descriptive Paper (2021-22)

III B.Tech. I Sem., II Mid-Term Examination, December 2021

Structural Analysis -II

1.	The stiffness matrix method considers	as unknowns.
	a) Displacements b) Forces c) Moments of	d) Torques
2.	The neutral axis of the completely plastic	section is also known as,
	a) Complete area axis b) Neutral axis c) E	Equal area axis d) Centroidal axis
3.	Shape factor is the ratio of	
	a) Plastic moment to the elastic momen	t b) Elastic moment to the plastic moment
	b) Elastic modulus to the plastic modulu	us d) Plastic modulus to the elastic modulus
4.	The maximum bending moment is equal	to M _p is the principle behind
	a) Static theorem b) Kinematic theorem c	e) Uniqueness theorem d) Clapeyron's theorem
5.	The work done by plastic hinges is equal	to external work done by loads is the principle behind
	a) Static theorem b) Kinematic theorem c	e) Uniqueness theorem d) Clapeyron's theorem
6.	Both elastic and plastic methods neglect	
	a) live load on structure b) dead load on s	tructure c) deformations due to load d) influence of stability
7.	Which of the following relation about pl	lastic moment is correct?
	a) $M_p = Z_p / f_y b$) $M_p = Z_p + f_y c$) $M_p = Z_p + f_y c$	$_{p}f_{y}$ d) $M_{p}=Z_{p}-f_{y}$
8.	Match the pairs with correct shape factor	•
	Cross section	Shape factor (average or maximum)
	A) Circular	(i) 1.8
	B) Rectangular	(ii) 1.14
	C) Wide flange I-section (about major	or axis) (iii) 1.7
	D) Channels (about minor axis)	(iv) 1.5
	a) A-i, B-ii, C-iii, D-iv b) A-iv, B-iii, G	C-ii, D-i c) A-iii, B-iv, C-ii, D-i d) A-iii, B-ii, C-iv, D-i
9.	What is the important feature of stiffness	method over flexibility method of analysis?
	a) Not essential to select the redundant	
	b) Have to determine the degree of static	indeterminacy
	c) Remove the selective redundant for the	ne purpose of primary determinate stable structure
	d) Difficult for large and complex struct	ures
10	. To generate the jth column of the flexibil	lity matrix
	a) A unit force is applied at coordinate j	and the displacements are calculated at all coordinates
	b) A unit displacement is applied at coor	rdinate j and the forces are calculated at all coordinates
	c) A unit force is applied at coordinate j	and the forces are calculated at all coordinates
	d) All the above	

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Department of Civil Engineering Descriptive Paper (2021-22)

III B.Tech. I Sem., I Mid-Term Examination, October 2021

Mid-I Examination Marks Sheet

S. No	Roll No	Student Name	Subjective Marks (15)	Objective Marks (5)	Total Marks (20)
1	19241A0161	ABDUL RAHEEM	7	5	12
2	19241A0162	ANEMONI MURALI MANOHAR	10	3	13
3	19241A0163	ASKANY HARISH SAGAR	9	4	13
4	19241A0164	BODLA AKSHITH	11	3	14
5	19241A0165	BURRA VAMSHI KRISHNA	15	4	19
6	19241A0166	CHERLAKOLA AKHILA	13	4	17
7	19241A0167	CHINTAPALLI VIKRAM	9	4	13
8	19241A0168	CHIRRIBOYINA DHANYA	9	4	13
9	19241A0169	D SREE MADHURI	12	4	16
10	19241A0170	GADDAM SAHITHI	12	3	15
11	19241A0171	GAJJALA SUKENDHAR REDDY	3	5	8
12	19241A0172	YASHASWI GANGAVARAM	4	3	7
13	19241A0173	GINDHAM ADITYA KUMAR	11	3	14
14	19241A0174	GUDHETI NARENDAR REDDY	10	3	13
15	19241A0175	GUMMADI SAI PRATEEK REDDY	AB	AB	AB
16	19241A0176	HANMAPUR DHEERAJ GOUD	1	4	5
17	19241A0177	JAVVAJI AISHWARYA	11	4	15
18	19241A0178	JULAPALLY NITHIN RAO	0	4	4
19	19241A0179	K NAVEEN	3	4	7
20	19241A0180	K RAJESHWARI	15	4	19
21	19241A0181	KACHAVA SURENDAR	9	5	14
22	19241A0182	KODATHALA INDU	15	3	18
23	19241A0183	KOTARU SRINIVASA VARAPRASAD	10	4	14
24	19241A0184	MALOTH RAHUL	3	4	7
25	19241A0185	MATURI SATHVIK	15	3	18
26	19241A0186	MD ABDUL MAAJID	3	3	6
27	19241A0187	MEDARI DAYANA	AB	AB	AB
28	19241A0188	NARSINGA SANDEEP	2	4	6
29	19241A0189	PALANATI ROHITH	3	3	6
30	19241A0190	PURALASETTY BHAVANA	13	3	16
31	19241A0191	RODDA MALAVIKA REDDY	13	3	16
32	19241A0192	SAPRAM NAGA SRILOWKYA MUKTHA	AB	AB	AB
33	19241A0193	SHAIK PARVEZ ANSARI	AB	AB	AB

34	19241A0194	SIDDELA THARUN KUMAR	7	3	10
35	19241A0195	TALARI CHANDANA SREE	3	3	6
36	19241A0196	VALLEPU KALYAN	10	4	14
37	19241A0197	VRASHAB PATEL	15	5	20
38	19241A0198	YELLAVULA NARENDER	7	4	11
39	19241A0199	BADDELA SAI THARUN	8	4	12
40	20245A0101	Aamanchi Bowmi	15	5	20
41	20245A0102	Aviraboina Sai Chaithanya	15	4	19
42	20245A0103	Bairy B S Anirudh	12	3	15
43	20245A0104	Daddu Tejasree	14	4	18
44	20245A0105	Dopathi Raviteja	15	4	19
45	20245A0106	Eruventi Niharika	15	4	19
46	20245A0107	Gaddamidi Aanil	9	3	12
47	20245A0108	Gandla Rishik Raj	7	3	10
48	20245A0109	Gone Naveen Kumar	10	5	15
49	20245A0110	Kota Vishal	13	5	18
50	20245A0111	Kummari Mahesh	6	4	10
51	20245A0112	Lakavath Anil	5	4	9
52	20245A0113	Madavaram Rohith	10	4	14
53	20245A0114	Mandala Akshitha	13	4	17
54	20245A0115	M Manjunath	9	4	13
55	20245A0116	Porandla Nababhushanam	14	4	18
56	20245A0117	Pulishetty Bhavani	7	4	11
57	20245A0118	Racha Kranthi Ranadeer	8	3	11
58	20245A0119	S Manoj Kumar	15	4	19
59	20245A0120	Samudrala Manideep	14	4	18
60	20245A0121	Sangepaga Goutham	4	5	9
61	20245A0122	Sodadasi Rahul	13	4	17
62	20245A0123	Vanga Harshith	2	4	6
63	20245A0124	Choleti Vineetha	13	4	17
64	20245A0125	Gangula Grishma	13	4	17
65	20245A0126	Bollampalli Sai Poojith	8	5	13
66	20245A0127	Pamulapati Sumanth	5	4	9
67	20245A0128	T Sanghamithra	15	5	20
68	20245A0129	Abeda Akanksha	13	3	16
69	20245A0130	Doppalapudi Ramvineeth Sai	7	4	11
70	20245A0131	Pilly Uday Kiran	7	4	11

Signature of Faculty Signature of HOD

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Department of Civil Engineering Descriptive Paper (2021-22)

III B.Tech. I Sem., II Mid-Term Examination, December 2021

Mid-II Examination Marks Sheet

S. No	Roll No	Student Name	Subjective Marks (15)	Objective Marks (5)	Total Marks (20)
1	19241A0161	ABDUL RAHEEM	5	4	9
2	19241A0162	ANEMONI MURALI MANOHAR	4	4	8
3	19241A0163	ASKANY HARISH SAGAR	5	4	9
4	19241A0164	BODLA AKSHITH	7	5	12
5	19241A0165	BURRA VAMSHI KRISHNA	15	5	20
6	19241A0166	CHERLAKOLA AKHILA	10	4	14
7	19241A0167	CHINTAPALLI VIKRAM	13	4	17
8	19241A0168	CHIRRIBOYINA DHANYA	12	4	16
9	19241A0169	D SREE MADHURI	14	4	18
10	19241A0170	GADDAM SAHITHI	11	4	15
11	19241A0171	GAJJALA SUKENDHAR REDDY	2	4	6
12	19241A0172	YASHASWI GANGAVARAM	0	4	4
13	19241A0173	GINDHAM ADITYA KUMAR	11	3	14
14	19241A0174	GUDHETI NARENDAR REDDY	12	3	15
15	19241A0175	GUMMADI SAI PRATEEK REDDY	0	3	3
16	19241A0176	HANMAPUR DHEERAJ GOUD	6	3	9
17	19241A0177	JAVVAJI AISHWARYA	13	4	17
18	19241A0178	JULAPALLY NITHIN RAO	1	3	4
19	19241A0179	K NAVEEN	13	5	18
20	19241A0180	K RAJESHWARI	15	5	20
21	19241A0181	KACHAVA SURENDAR	11	5	16
22	19241A0182	KODATHALA INDU	5	5	10
23	19241A0183	KOTARU SRINIVASA VARAPRASAD	13	5	18
24	19241A0184	MALOTH RAHUL	10	4	14
25	19241A0185	MATURI SATHVIK	15	3	18
26	19241A0186	MD ABDUL MAAJID	2	3	5
27	19241A0187	MEDARI DAYANA	12	3	15
28	19241A0188	NARSINGA SANDEEP	8	3	11
29	19241A0189	PALANATI ROHITH	7	3	10
30	19241A0190	PURALASETTY BHAVANA	10	3	13
31	19241A0191	RODDA MALAVIKA REDDY	13	4	17
32	19241A0192	SAPRAM NAGA SRILOWKYA MUKTHA	4	4	8

33	19241A0193	SHAIK PARVEZ ANSARI	AB	AB	AB
34	19241A0194	SIDDELA THARUN KUMAR	ELA THARUN KUMAR 4 3		7
35	19241A0195	TALARI CHANDANA SREE	2 1		3
36	19241A0196	VALLEPU KALYAN	11 3		14
37	19241A0197	VRASHAB PATEL	15 5		20
38	19241A0198	YELLAVULA NARENDER	13	3	16
39	19241A0199	BADDELA SAI THARUN	8	3	11
40	20245A0101	Aamanchi Bowmi	15	5	20
41	20245A0102	Aviraboina Sai Chaithanya	12	3	15
42	20245A0103	Bairy B S Anirudh	6 3		9
43	20245A0104	Daddu Tejasree	11	5	16
44	20245A0105	Dopathi Raviteja	14 3		17
45	20245A0106	Eruventi Niharika	13	3	16
46	20245A0107	Gaddamidi Aanil	12	3	15
47	20245A0108	Gandla Rishik Raj	12	4	16
48	20245A0109	Gone Naveen Kumar	11	3	14
49	20245A0110	Kota Vishal	13	4	17
50	20245A0111	Kummari Mahesh	7	2	9
51	20245A0112	Lakavath Anil	11	4	15
52	20245A0113	Madavaram Rohith	6	3	9
53	20245A0114	Mandala Akshitha	15	3	18
54	20245A0115	M Manjunath	11	4	15
55	20245A0116	Porandla Nababhushanam	14	3	17
56	20245A0117	Pulishetty Bhavani	12	3	15
57	20245A0118	Racha Kranthi Ranadeer	9	3	12
58	20245A0119	S Manoj Kumar	14 3		17
59	20245A0120	Samudrala Manideep	15	3	18
60	20245A0121	Sangepaga Goutham	4	3	7
61	20245A0122	Sodadasi Rahul	14	3	17
62	20245A0123	Vanga Harshith	11	3	14
63	20245A0124	Choleti Vineetha	12	3	15
64	20245A0125	Gangula Grishma	14	3	17
65	20245A0126	Bollampalli Sai Poojith	11	3	14
66	20245A0127	Pamulapati Sumanth	6	3	9
67	20245A0128	T Sanghamithra	11	4	15
68	20245A0129	Abeda Akanksha	14	2	16
69	20245A0130	Doppalapudi Ramvineeth Sai	4	3	7
70	20245A0131	Pilly Uday Kiran	4	2	6

Signature of Faculty Signature of HOD