# PAVEMENT DESIGN (GR18A4067)

IV-B.Tech – II Semester

# **G.SWETHA**

### **Assistant Professor**



# **Department of Civil Engineering**

### Gokaraju Rangaraju Institute of Engineering and Technology

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

| S.No. | Name of the Format                                                           |
|-------|------------------------------------------------------------------------------|
| 1     | Syllabus                                                                     |
| 2     | Time Table                                                                   |
| 3     | Program Educational Objectives                                               |
| 4     | Program Objectives                                                           |
| 5     | Course Objectives                                                            |
| 6     | Course Outcomes                                                              |
| 7     | Students Roll List                                                           |
| 8     | Guide lines to study the course books & references, course design & delivery |
| 9     | Course Schedule                                                              |
| 10    | Unit Plan/Course Plan                                                        |
| 11    | Lesson Plan                                                                  |
| 12    | Evaluation Strategy                                                          |
| 13    | Assessment in relation to COB's and CO's                                     |
| 14    | Tutorial Sheets                                                              |
| 15    | Assignment Sheets                                                            |
| 16    | Rubric for course                                                            |
| 17    | Mappings of CO's and PO's                                                    |
| 18    | Model question papers                                                        |
| 19    | Mid-I and Mid-II question papers                                             |
| 20    | Mid-I marks                                                                  |
| 21    | Mid-II marks                                                                 |
| 22    | Sample answer scripts and Assignments                                        |
| 23    | Course materials like Notes, PPT's, Videos, etc,.                            |

#### (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

IV Year B.Tech. CE – II Semester

GR 18Regulations (2021-2022)

L T/P C 3 1/0 4

### **Pavement Design**

**UNIT I Introduction to pavement design**: Types of Pavements-Functions of individual layers, Variables considered in Pavement Design- Factors affecting Pavement Design: Wheel loads, Tire Pressure, Contact Pressure, ESWL & ESAL concepts

**UNIT II Material characteristics**: Tests on sub-grade, Tests on aggregates-Aggregate properties and their importance-Tests on Bitumen-Requirements of design mix-Marshall method of mix design.

**UNIT III Stresses in flexible and rigid pavements**: Stresses in Flexible pavements - Layered systems concept-One layer system- Boussinesq two layer system- Burmister theory of Pavement design. Stresses in Rigid pavements -Importance of Joints in rigid Pavements-Types of joints-use of tie bars and dowel bars - Relative stiffness -Modulus of Subgrade Reaction-Stresses due to warping Stresses due to loads - Stresses due to friction.

**UNIT IV Flexible and rigid pavement design**: Flexible Pavement Design concepts-CBR method of Flexible Pavement design-IRC method of design-Asphalt Institute method and AASTHO methods. Rigid Pavement design concepts-IRC method of Rigid pavement design-PCA method-Design of tie bars and dowel bars.

**UNIT V Highway construction and maintenance**: Construction: Construction of Bituminous Pavements, construction of Cement Concrete Roads. Highway maintenance –Pavement failures: failures in flexible Pavements, Rigid Pavement failures, Pavement evaluation- Overlay design by Benkelman Beam method.

**TEXT BOOKS**: 1. Highway Engineering-S.K. Khanna &C.E.G. Justo, Nemchand & Bros.

2. Pavement Design – Yang H. Huang

- 3. Principles of Pavement Design E. J. Yoder, M. W. Witczak
- 4. Highway and traffic Engineering-Subash Saxena

#### (Autonomous)

#### Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

### **Program Educational Objectives**

# This education is meant to prepare our students to thrive and lead. During their progression, our graduates will

**PEO 1:** Graduates of the programme will be successful in technical and professional career.

PEO 2: Graduates of the programme will have proficiency in solving real time Civil Engineering projects.PEO 3: Graduates of the programme will continue to engage in life-long learning with ethical and social responsibility.

#### **Program Outcomes**

Graduates of the Civil Engineering programme will be able to

- a. Apply knowledge of mathematics, science and fundamentals of Civil Engineering.
- b. Analyse problem and interpret the data.
- c. Design a system component, or process to meet desired needs in Civil Engineering within realistic constraints.
- d. Identify, formulate, analyse and interpret data to solve Civil Engineering problems.
- e. Use modern engineering tools such as CAD and GIS for the Civil Engineering practice.
- f. Understand the impact of engineering solutions in a global, economic and societal context.
- g. Understand the effect of Civil Engineering solutions on environment and to demonstrate the need for sustainable development.
- h. Understanding of professional and ethical responsibility.
- i. Work effectively as an individual or in a team and to function on multi-disciplinary context.
- j. Communicate effectively with engineering community and society.
- k. Demonstrate the management principles in Civil Engineering projects.l. Recognize the need for and an ability to engage in life-long learning.

### **Program Specific Outcomes (PSOs)**

**PSO1:** Recognize the need for a sustainable environment and design smart infrastructure considering the global challenges.

**PSO 2:** Create and develop innovative designs with new era materials through research and development.

### Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

### **COURSE OBJECTIVES**

| Academic Year               | : 2021-2022       | 2      |         |                          |
|-----------------------------|-------------------|--------|---------|--------------------------|
| Semester                    | : II              |        |         |                          |
| Name of the Progra          | <b>m</b> : B.Tech | Year:  | IV Year | Section: A/B             |
| Course/Subject              | : Pavement D      | Design | Cours   | se Code: GR18A4067       |
| Name of the Faculty         | : G.Swetha        |        |         |                          |
| <b>Designation:</b> Assista | ant Professor     |        |         | Dept.: Civil Engineering |

On completion of this Subject/Course the student shall be able to:

| S.No | Objectives                                                                                            |
|------|-------------------------------------------------------------------------------------------------------|
| 1    | To give a detailed notion of methods of highway design and controlling factors                        |
| 2    | To introduce software tools for design and maintenance of pavements                                   |
| 3    | To provide the idea of design standards and traffic data collection for flexible and rigid pavements. |
| 4    | To give the knowledge of predictability about material constraints and optimal utilization.           |
| 5    | To introduce the vital traffic parameters and the methods of their estimation.                        |
| 6    | To provide the knowledge of major failures in pavements, causes and preventive measures.              |

**TEXT BOOKS**: 1. Highway Engineering-S.K. Khanna &C.E.G. Justo, Nemchand & Bros.

2. Pavement Design – Yang H. Huang

3. Principles of Pavement Design – E. J. Yoder, M. W. Witczak

4. Highway and traffic Engineering-Subash Saxena

Signature of HOD

### Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **COURSE OUTCOMES**

| Academic Year               | : 2021-2022   |             |                    |                          |
|-----------------------------|---------------|-------------|--------------------|--------------------------|
| Semester                    | : II          |             |                    |                          |
| Name of the Program         | n : B.Tech    | Year: IV Ye | ear                | Section: A/B             |
| Course/Subject              | : Pavement De | esign       | <b>Course Code</b> | : GR18A4067              |
| Name of the Faculty         | : G.Swetha    |             |                    |                          |
| <b>Designation:</b> Assista | nt Professor  |             |                    | Dept.: Civil Engineering |

On completion of this Subject/Course the student shall be able to:

| S.No | Outcomes                                                                                                      |
|------|---------------------------------------------------------------------------------------------------------------|
| 1    | Illustrate highway design methods, constraints and controlling factors.                                       |
| 2    | Apply the design standards in designing principle elements of the highway.                                    |
| 3    | Predict the resource constraints and allows to utilize the available materials in a sustainable way           |
| 4    | Examining the basic parameter of traffic engineering and the methods which helps to estimate those parameters |
| 5    | Recognize the major failure modes of flexible and rigid pavement and helps in maintaining them properly.      |

**TEXT BOOKS**: 1. Highway Engineering-S.K. Khanna &C.E.G. Justo, Nemchand & Bros. 2. Pavement Design – Yang H. Huang

- 3. Principles of Pavement Design E. J. Yoder, M. W. Witczak
- 4. Highway and traffic Engineering-Subash Saxena

Signature of HOD



### Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

### Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

| S.No | Reg No     | Student Name              |
|------|------------|---------------------------|
| 1    | 17241A0153 | SUJITH KUMAR SHINDE       |
| 2    | 17241A0157 | VUPPULA MITHUNKUMAR Reddy |
| 3    | 18241A0101 | AJMEERA GANESH            |
| 4    | 18241A0102 | ANABOTULA SRAVANI         |
| 5    | 18241A0103 | ANUMATLA MANOJ            |
| 6    | 18241A0104 | BYNA RISHITHA             |
| 7    | 18241A0105 | BURA THARASRI             |
| 8    | 18241A0106 | PUDARI BADRINATH GOUD     |
| 9    | 18241A0107 | BALASANI ROHITH           |
| 10   | 18241A0108 | BANDARI VEERASWAMY        |
| 11   | 18241A0109 | BANDI VARUN KUMAR         |
| 12   | 18241A0110 | BASHIPAKA PRADEEP         |
| 13   | 18241A0111 | BATHULA NIKHIL            |
| 14   | 18241A0112 | BATIKIRI VEERENDRA SWAMY  |
| 15   | 18241A0113 | BHUKYA SOUJANYA           |
| 16   | 18241A0114 | BHUKYA VARUN NAIK         |
| 17   | 18241A0115 | BODDU PAVAN               |
| 18   | 18241A0116 | BYAGARI RANGARAJU         |
| 19   | 18241A0117 | CHADA RUCHITA             |
| 20   | 18241A0118 | CHINTHAKUNTLA THRIVEEN    |
| 21   | 18241A0119 | CV JASWANTH SURYA         |
| 22   | 18241A0120 | DOSAPATI NISHU            |
| 23   | 18241A0121 | G PRASHANTH               |
| 24   | 18241A0122 | GADDIPATI LOHITHA         |
| 25   | 18241A0123 | GANGAM ROHIT REDDY        |
| 26   | 18241A0124 | GOTTEMUKKALA GOVARDHAN    |

| 27 | 18241A0125 | HRISHIKESH BANSAL           |
|----|------------|-----------------------------|
| 28 | 18241A0126 | JANAPATI RAJU               |
| 29 | 18241A0127 | JYOTHIKA MANNAVA            |
| 30 | 18241A0128 | K HARSHITHA REDDY           |
| 31 | 18241A0129 | KOLAN RESHIKESH REDDY       |
| 32 | 18241A0130 | KARRI BHARATH CHANDRA REDDY |
| 33 | 18241A0131 | KUPPALA NIHAR               |
| 34 | 18241A0132 | KURVA LAVANYA               |
| 35 | 18241A0133 | MADDIMSETTY SRI CHARAN      |
| 36 | 18241A0134 | MAGANOOR MANASWINI          |
| 37 | 18241A0135 | MALOTH BHAVSINGH            |
| 38 | 18241A0136 | MALOTHU NAVEENA             |
| 39 | 18241A0137 | MANDA ITHIHAS               |
| 40 | 18241A0138 | MOHAMMAD ASHFAQ AHMED       |
| 41 | 18241A0139 | MOHAMMED OMER SHAREEF       |
| 42 | 18241A0140 | MUKUNDU NAVEEN              |
| 43 | 18241A0141 | NALUMASU SAHITHI            |
| 44 | 18241A0142 | NAMPELLY RAVI KUMAR         |
| 45 | 18241A0143 | NARRA SHASHIDHAR REDDY      |
| 46 | 18241A0144 | PATLOLA VINAY REDDY         |
| 47 | 18241A0145 | Pattambetty Pavan Kumar     |
| 48 | 18241A0146 | POLA THARUN                 |
| 49 | 18241A0147 | POSANI S V A KALYAN         |
| 50 | 18241A0148 | pulle manichandra           |
| 51 | 18241A0149 | RAJULAPATI ROHIT NAGA SAI   |
| 52 | 18241A0150 | S Subbaram Reddy            |
| 53 | 18241A0153 | SUNKARI VIKAS               |
| 54 | 18241A0154 | THIRUPATHI RAO SALLA        |
| 55 | 18241A0155 | Trivikram reddy             |
| 56 | 18241A0156 | Trupthi shreya              |
| 57 | 18241A0157 | Vakamalla Bhavya sree       |
| 58 | 18241A0158 | Vemula Manisha              |
| 59 | 18241A0159 | VUPPULA KEERTHANA           |

| 60  | 18241A0160 | YALLA ANITHA                   |
|-----|------------|--------------------------------|
| 61  | 17241A0161 | Abdul Samad                    |
| 62  | 18241A0161 | A NACHIKETH                    |
| 63  | 18241A0162 | ALETI JAGADISH                 |
| 64  | 18241A0163 | AMIRNENI ANUSHA                |
| 65  | 18241A0164 | ANIREDDY AVINASH               |
| 66  | 18241A0165 | ASHITHA GOLLA                  |
| 67  | 18241A0166 | ANIMESH BAATHUK                |
| 68  | 18241A0167 | BOPPU LOKESH                   |
| 69  | 18241A0168 | BUDAGAM HARSHITH               |
| 70  | 18241A0169 | CHILUMULA SRIDHAR              |
| 71  | 18241A0170 | DANDRE VENNELA                 |
| 72  | 18241A0171 | DOTI UPENDER                   |
| 73  | 18241A0172 | EDA MANASA                     |
| 74  | 18241A0173 | GONDA HARSHINI                 |
| 75  | 18241A0174 | GORE KAMALAKAR SAILESH         |
| 76  | 18241A0175 | GORE KAMALAKAR SANDEEP         |
| 77  | 18241A0176 | GUDDATI ARUN                   |
| 78  | 18241A0177 | VIJAY NARASIMHA REDDY KOLAGTLA |
| 79  | 18241A0178 | KANCHARAKUNTLA DEEPIKA         |
| 80  | 18241A0179 | KOTA RASHMITHA                 |
| 81  | 18241A0180 | KOTHURI PRANAY                 |
| 82  | 18241A0181 | KUDALA RAMA                    |
| 83  | 18241A0182 | KUMMARI SRILEKHA               |
| 84  | 18241A0183 | KUNCHALA ADARSH                |
| 85  | 18241A0184 | K.Neeraj Prasad                |
| 86  | 18241A0185 | KYAMA PAVAN                    |
| 87  | 18241A0186 | M SHEKHAR                      |
| 88  | 18241A0187 | MALRAJ MANVITHA                |
| 89  | 18241A0188 | MATHARASI SAI KUMAR            |
| 90  | 18241A0189 | MD AMEER SOHAIL                |
| 91  | 18241A0190 | MD AMIR                        |
| 92  | 18241A0191 | MEDARI VIKRAM ADITHYA          |
| 93  | 18241A0192 | MEDIGA KARTHIK                 |
| 94  | 18241A0193 | SUNKARA MONIESH REDDY          |
| 95  | 18241A0194 | KAUSHIK NADELLA                |
| 96  | 18241A0195 | NIKHITHA KASUVOJULA            |
| 97  | 18241A0196 | NUNAVATH SUMAN                 |
| 98  | 18241A0197 | POTHULAPALLY KISHOR            |
| 99  | 18241A0198 | P.Spandana Reddy               |
| 100 | 18241A0199 | PRATHYUSHA MADDALA             |

| 101 | 18241A01A0 | PRATYUSH BAVANARI        |
|-----|------------|--------------------------|
| 102 | 18241A01A1 | PUTTA ROHIT              |
| 103 | 18241A01A2 | RAHUL PRADHAN            |
| 104 | 18241A01A3 | RAMPELLI PRAVALIKA       |
| 105 | 18241A01A4 | RANGU SONIYA             |
| 106 | 18241A01A5 | RENTALA ADARSH REDDY     |
| 107 | 18241A01A6 | RITISH J                 |
| 108 | 18241A01A7 | SEELAM RAHUL GOUD        |
| 109 | 18241A01A8 | SHAIK AFEEZ              |
| 110 | 18241A01A9 | SHAIK SHOAIB             |
| 111 | 18241A01B0 | SHIVARATHRI SAI KUMAR    |
| 112 | 18241A01B1 | SHIVARATHRI THARUN       |
| 113 | 18241A01B2 | SOWMIKA BOYAPATI         |
| 114 | 18241A01B3 | VISHRUTH REDDY T N       |
| 115 | 18241A01B4 | TEKULA PRASHANTH REDDY   |
| 116 | 18241A01B5 | TEEGALA SOMESHWAR REDDY  |
| 117 | 18241A01B6 | THATIPAMULA VIGNA SAI    |
| 118 | 18241A01B7 | THOTA SRI SAI            |
| 119 | 18241A01B8 | VEDATI MANIKANTA KARTHIK |
| 120 | 18241A01B9 | VALLAPU REDDY SUSHRUTHA  |
| 121 | 18241A01C0 | YANALA RITHISH REDDY     |
| 122 | 19245A0101 | Kancherla Bharath        |
| 123 | 19245A0102 | ELUPULA KUMARASWAMY      |
| 124 | 19245A0103 | Brahmadevara bhavitha    |
| 125 | 19245A0104 | Dasari namratha          |
| 126 | 19245A0105 | T chandana               |
| 127 | 19245A0106 | Kola.Haritha             |
| 128 | 19245A0107 | CHOUGONI SHIVA SHANKAR   |
| 129 | 19245A0108 | KOTA ANVESH              |
| 130 | 19245A0109 | polagani Chandu goud     |
| 131 | 19245A0110 | SADGARI KARTHIK          |
| 132 | 19245A0111 | GUGULOTHU PAVAN          |
| 133 | 19245A0112 | A RAGHAVENDRA            |

### **GUIDELINES TO STUDY THE COURSE/SUBJECT**

| Academic Year         | : 2021-2022                            |                          |
|-----------------------|----------------------------------------|--------------------------|
| Semester              | : 11                                   |                          |
| Name of the Program   | <b>i</b> : B.Tech <b>Year:</b> IV Year | Section: A /B            |
| Course/Subject        | : Pavement Design                      | Course Code:GR18A4067    |
| Name of the Faculty   | : G.Swetha                             |                          |
| Designation: Assistan | nt Professor                           | Dept.: Civil Engineering |

### **Guidelines to Students:**

Guidelines to study the course / subject: Pavement Design

This course aids in understanding the importance of roads in transportation field. Students will learn to differentiate several types of pavements, their structural variations and suitability under various loading and environmental conditions. This course helps students to learn standard and advanced methods of pavement construction.

So the students should have the following pre-requisites:

- 1. Knowledge of engineering materials and their mechanical properties
- 2. Knowledge of mathematics and statistics
- 3. Knowledge of geotechnical properties of soil
- 4. Basics of mechanics and dynamics

#### Where will this subject help?

- a. Useful in constructing pavements of various types under varying traffic loads
- b. Useful in learning effective design methods to ensure structural soundness of pavements
- c. Helps to evaluate existing pavements and notify different types of pavement failures.

d. Gives the knowledge of several types of construction methods and also of advanced equipment in road construction

### **Books / Material:**

| Text I | Text Books                                                                                         |  |  |  |
|--------|----------------------------------------------------------------------------------------------------|--|--|--|
| 1.     | Highway Engineering-S.K.khanna&C.J.Justo, Nemchand& Bros.                                          |  |  |  |
| 2.     | Principles & Practices of Highway Engineering - Dr.L.R.Kadiyali & Dr.N.BLal,<br>Khanna Publishers. |  |  |  |
| 3.     | Transportation Engineering, K.P.Subramanian                                                        |  |  |  |
| 4.     | Highway and traffic Engineering, Subash Saxena                                                     |  |  |  |

| References |                                                            |  |
|------------|------------------------------------------------------------|--|
| 1.         | Pavement Design – Yang H. Huang                            |  |
| 2.         | Principles of Pavement Design – E. J. Yoder, M. W. Witczak |  |

#### **Course Design and Delivery System (CDD):**

- The Course syllabus is written into number of learning objectives and outcomes.
- These learning objectives and outcomes will be achieved through lectures, assessments, assignments, experiments in the laboratory, projects, seminars, presentations, etc.
- Every student will be given an assessment plan, criteria for assessment, scheme of evaluation and grading method.
- The Learning Process will be carried out through assessments of Knowledge, Skills and Attitude by various methods and the students will be given guidance to refer to the text books, reference books, journals, etc.

The faculty be able to –

- Understand the principles of Learning
- Understand the psychology of students
- Develop instructional objectives for a given topic
- Prepare course, unit and lesson plans
- Understand different methods of teaching and learning
- Use appropriate teaching and learning aids
- Plan and deliver lectures effectively
- Provide feedback to students using various methods of Assessments and tools of Evaluation
- Act as a guide, advisor, counselor, facilitator, motivator and not just as a teacher alone

Signature of HOD

Date:

Signature of faculty

Date:

### **COURSE SCHEDULE**

| Academic Year                  | : 2021-2022   |             |                     |              |  |
|--------------------------------|---------------|-------------|---------------------|--------------|--|
| Semester                       | : II          |             |                     |              |  |
| Name of the Program            | n: B.Tech     | Year: IV Ye | ear                 | Section: A/B |  |
| Course/Subject                 | : Pavement De | esign       | Course Code: GR18A4 |              |  |
| Name of the Faculty : G.Swetha |               |             |                     |              |  |

Designation: Assistant Professor

**Dept.:** Civil Engineering

The Schedule for the whole Course / Subject is:

|        |                                                             | Duration   | n (Date)       | Total No.  |
|--------|-------------------------------------------------------------|------------|----------------|------------|
| S. No. | Description                                                 | From       | То             | Of Periods |
| 1.     | <b>UNIT-I</b><br>Introduction to Pavement Design            | 10/1/2022  | 02/02/202<br>2 | 10         |
| 2.     | UNIT-II<br>Material characteristics                         | 07/02/2022 | 23/02/202<br>2 | 10         |
| 3.     | <b>UNIT-III</b><br>Stresses in flexible and rigid pavements | 28/02/2022 | 21/03/202<br>2 | 10         |
| 4.     | <b>UNIT-IV</b><br>Flexible and rigid pavement design        | 22/03/2022 | 11/04/202<br>2 | 12         |
| 5.     | <b>UNIT-V</b><br>Highway construction and maintenance       | 12/04/2022 | 02/05/202<br>2 | 9          |

Total No. of Instructional periods available for the course: 65 Hours / Periods

| r             |            |            |                                                                                 |
|---------------|------------|------------|---------------------------------------------------------------------------------|
| Lesson<br>No. | Date       | Unit<br>No | Topics / Sub – Topics Section: A/B                                              |
| 1             | 10/1/2022  |            | Introduction - Requirements of a Pavement                                       |
| 2             | 11/1/2022  |            | Types of pavement-Suitability                                                   |
| 3             | 12/1/2022  |            | Functions of pavement component layers                                          |
| 4             | 17/1/2022  |            | Problems on Contact pressure and tire Pressure concept                          |
| 5             | 18/1/2022  |            | Factors effecting pavement Design: Wheel load, tire pressure & contact pressure |
| 6             | 19/1/2022  | 1          | Factors affecting pavement design- Environmental factors, Structural models     |
| 7             | 24/1/2022  |            | ESAL                                                                            |
| 8             | 25/1/2022  |            | ESWL – Determination (Stress criteria, Vertical Deformation criteria)           |
| 9             | 31/1/2022  |            | EALF & VDF calculation                                                          |
| 10            | 01/02/2022 |            | Problems on ESWL concept                                                        |
| 11            | 02/02/2022 |            | Problems on EALF concept                                                        |
| 12            | 07/02/2022 |            | Pavement Materials- Importance                                                  |
| 13            | 08/02/2022 |            | Soil characteristics, types                                                     |
| 14            | 09/02/2022 |            | Tests on sub-grade; CBR test                                                    |
| 15            | 14/02/2022 |            | Tests on aggregates, Engineering properties                                     |
| 16            | 15/02/2022 |            | Impact test, Abrasion test, Specific gravity test                               |
| 17            | 15/02/2022 |            | Shape test-elongation test and flakiness test, crushing test, stripping         |
| 17            |            | 2          | test                                                                            |
| 18            | 16/02/2022 | Ζ.         | Difference between Bitumen and Tar, Types of Bitumen                            |
| 19            | 16/02/2022 |            | Uses of bitumen, Tests on bitumen                                               |
| 20            | 21/02/2022 |            | Penetration test, viscosity test, softening point test                          |
| 21            | 21/02/2022 |            | Flash and fire test, Ductility test, specific gravity test                      |
| 22            | 22/02/2022 |            | Requirements of Mix design.                                                     |
| 23            | 22/02/2022 |            | Procedure for mix, sample preparation                                           |
| 24            | 23/02/2022 |            | Marshall method of mix design procedure                                         |
| 25            | 28/02/2022 |            | Stresses in Flexible pavements, layered system concept                          |
| 26            | 01/03/2022 |            | One layer system concept                                                        |
| 27            | 01/03/2022 | 3          | Bossiness two layer system                                                      |
| 28            | 02/03/2022 | 3          | Burmister theory of pavement design                                             |
| 29            | 07/03/2022 |            | MID-1                                                                           |
| 30            | 08/03/2022 |            | MID-1                                                                           |

### **SESSION PLAN**

| 21 | 14/02/2022 |   | Droblems                                                          |  |  |
|----|------------|---|-------------------------------------------------------------------|--|--|
| 31 | 14/03/2022 |   | Problems                                                          |  |  |
| 32 | 14/03/2022 |   | Stress in Rigid pavement                                          |  |  |
| 33 | 15/03/2022 |   | Importance of joints in rigid pavements                           |  |  |
| 34 | 15/03/2022 |   | Types of joints                                                   |  |  |
| 35 | 21/03/2022 |   | Use of tie bars and dowel bars                                    |  |  |
| 36 | 21/03/2022 |   | Relative stiffness, Modulus of subgrade reaction                  |  |  |
| 37 | 22/03/2022 |   | Introduction to pavement designs                                  |  |  |
| 38 | 22/03/2022 |   | Flexible pavement design-criteria                                 |  |  |
| 39 | 28/03/2022 |   | CBR method                                                        |  |  |
| 40 | 28/03/2022 |   | Problems- IRC design of flexible pavements                        |  |  |
| 41 | 29/03/2022 |   | IRC method of design- estimation of traffic (axle loads, traffic  |  |  |
| 41 |            |   | distribution)                                                     |  |  |
| 42 | 29/03/2022 | 4 | IRC method of design-pavement thickness and composition, Drainage |  |  |
| 42 |            | 4 | measures                                                          |  |  |
| 43 | 04/03/2022 |   | AASHTO methods                                                    |  |  |
| 44 | 04/04/2022 |   | Rigid pavement design-criteria                                    |  |  |
| 45 | 05/04/2022 |   | IRC method of rigid pavement design                               |  |  |
| 46 | 05/04/2022 |   | PCA method of design                                              |  |  |
| 47 | 11/04/2022 |   | Design of tie bars and dowel bars                                 |  |  |
| 48 | 11/04/2022 |   | Problems                                                          |  |  |
| 49 | 12/04/2022 |   | Construction: Construction of Bituminous Pavements                |  |  |
| 50 | 12/04/2022 |   | Construction of bituminous pavements                              |  |  |
| 51 | 18/04/2022 |   | Construction of cement concrete roads- cement concrete slab       |  |  |
| 52 | 19/04/2022 |   | Highway construction and maintenance                              |  |  |
| 53 | 25/04/2022 | 5 | Pavement failures- in Flexible pavements                          |  |  |
| 54 | 26/04/2022 |   | Failures in Rigid pavements                                       |  |  |
| 55 | 26/04/2022 |   | Failures in Rigid pavements-Examples                              |  |  |
| 56 | 02/05/2022 |   | Pavement evaluation- Benkelman Beam method                        |  |  |
| 57 | 02/05/2022 |   | Revision class                                                    |  |  |

### **Department of Civil Engineering**

### SCHEDULE OF INSTRUCTIONS UNIT PLAN

**Academic Year** : 2021-2022

Semester : II

**Course/Subject** 

Name of the Program : B.Tech Year: IV Year

UNIT NO: 1 Section: A

Name of the Hogram . D. Tech Teal. IV Teal

: Pavement Design

Course Code: GR18A4067

Name of the Faculty : G.Swetha

**Designation:** Assistant Professor

### **Dept.:** Civil Engineering

| S. No. | Date       | No. of<br>Periods | Topics / Sub – Topics                                                          | Objectives<br>&<br>Outcomes<br>Nos. | Blooms<br>Taxonomy | References         |
|--------|------------|-------------------|--------------------------------------------------------------------------------|-------------------------------------|--------------------|--------------------|
| 1.     | 10/1/2022  | 1                 | Requirements of a Pavement                                                     | CoB- 1,3<br>CO- 1,2                 | K2                 | Text Book<br>1 & 3 |
| 2.     | 11/1/2022  | 1                 | Types of pavement                                                              | CoB-1,3<br>CO- 1,2                  | K2                 | Text Book<br>1 & 3 |
| 3.     | 12/1/2022  | 1                 | Functions of pavement components                                               | CoB-1,3<br>CO- 1,2                  | K2                 | Text Book<br>1 & 3 |
| 4.     | 17/1/2022  | 1                 | Factors effecting pavement:<br>Wheel load, tire pressure &<br>contact pressure | CoB-1,3<br>CO- 1,2                  | K3                 | Text Book<br>1 & 3 |
| 5.     | 18/1/2022  | 1                 | ESAL & ESWL concepts                                                           | CoB-1,3<br>CO- 1,2                  | K3                 | Text Book<br>1 & 3 |
| 6.     | 19/1/2022  | 1                 | Strength characteristics of pavement materials                                 | CoB-1,3<br>CO- 1,2                  | K2                 | Text Book<br>1 & 3 |
| 7.     | 24/1/2022  | 1                 | Traffic analysis, ADT & AADT                                                   | CoB-1,3,5<br>CO- 1,2                | K3                 | Text Book<br>1 & 3 |
| 8.     | 25/1/2022  | 1                 | Problems on Contact pressure<br>and tire Pressure concept                      | CoB-1,3<br>CO- 1,2                  | K2                 | Text Book<br>1 & 3 |
| 9.     | 31/1/2022  | 1                 | Problems on ESWL concept                                                       | CoB-1,3<br>CO- 1,2                  | K2                 | Text Book<br>1 & 3 |
| 10.    | 01/02/2022 | 1                 | Determination of elastic modulus of pavement layers                            | CoB-1,3,2<br>CO- 1,2                | K3                 | Text Book<br>1 & 3 |

**TEXT BOOKS**: 1. Highway Engineering-S.K. Khanna &C.E.G. Justo, Nemchand & Bros. 3. Principles of Pavement Design – E. J. Yoder, M. W. Witczak



### **Department of Civil Engineering**

# SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-2022

Semester : II

Name of the Program : B.Tech Year: IV Year

UNIT NO: 2

Section: A

**Course/Subject** : Pavement Design

Course Code:GR18A4067

Name of the Faculty : G.Swetha

Designation: Assistant Professor

### Dept.: Civil Engineering

| S.No | Date       | No. of<br>Periods | Topics / Sub – Topics                     | Objectives<br>&<br>Outcomes<br>Nos. | Blooms<br>Taxonomy | References         |
|------|------------|-------------------|-------------------------------------------|-------------------------------------|--------------------|--------------------|
| 1.   | 07/02/2022 | 1                 | Pavement Materials-<br>Importance         | CoB- 1,4<br>CO- 5,7                 | K1                 | Text Book<br>1 & 2 |
| 2.   | 08/02/2022 | 1                 | Aggregate properties and their importance | CoB-1,4<br>CO- 1,5,7                | K2                 | Text Book<br>1 & 2 |
| 3.   | 09/02/2022 | 1                 | Tests on aggregates                       | CoB-1,4<br>CO- 1,5,7                | K2                 | Text Book<br>1 & 2 |
| 4.   | 14/02/2022 | 1                 | Bitumen- Properties                       | CoB-1,4<br>CO- 1,5,7                | K1                 | Text Book<br>1 & 2 |
| 5.   | 15/02/2022 | 1                 | Bitumen characteristics & applications    | CoB-1,4<br>CO- 1,5,7                | K2                 | Text Book<br>1 & 2 |
| 6.   | 15/02/2022 | 1                 | Emulsions-Types and applications          | CoB-1,4<br>CO- 1,5,7                | K2                 | Text Book<br>1 & 2 |
| 7.   | 16/02/2022 | 1                 | Bituminous mixes-Types                    | CoB-1,4<br>CO- 1,5,7                | K2                 | Text Book<br>1 & 2 |
| 8.   | 16/02/2022 | 1                 | Marshall method of mix design             | CoB-1,4<br>CO- 1,5,7                | К3                 | Text Book<br>1 & 2 |
| 9.   | 21/02/2022 | 1                 | Problems on volumetric analysis           | CoB-1,3<br>CO- 1,2                  | K2                 | Text Book<br>1 & 2 |
| 10.  | 21/02/2022 | 1                 | Details of Marshall test                  | CoB-1,4<br>CO- 1,5,7                | K2                 | Text Book<br>1 & 2 |

**TEXT BOOKS**: 1. Highway Engineering-S.K. Khanna &C.E.G. Justo, Nemchand & Bros. 2. Pavement Design – Yang H. Huang



### Department of Civil Engineering SCHEDULE OF INSTRUCTIONS UNIT PLAN

| Academic Year: 2021-2022Semester: IIUNIT NO: 3Name of the Program : B.TechYear: IV YearSection: A |                |                          |                                                      |                                     |                        |                    |  |
|---------------------------------------------------------------------------------------------------|----------------|--------------------------|------------------------------------------------------|-------------------------------------|------------------------|--------------------|--|
|                                                                                                   | /Subject       |                          | U                                                    | Code:GR18A                          | 4067                   |                    |  |
|                                                                                                   | of the Faculty |                          |                                                      | D                                   | O' 'I E' '             |                    |  |
| Designa                                                                                           | ation: Assista |                          | essor                                                |                                     | Civil Engine           | eering             |  |
| Lesson<br>No.                                                                                     | Date           | No.<br>of<br>Perio<br>ds | Topics / Sub – Topics                                | Objectives<br>&<br>Outcomes<br>Nos. | Blooms<br>Taxonom<br>y | Reference<br>s     |  |
| 1.                                                                                                | 28/02/2022     | 1                        | Flexible Pavement stress<br>analysis- Layers concept | CoB- 1,6<br>CO- 1,3,7               | K2                     | Text Book<br>1 & 3 |  |
| 2.                                                                                                | 01/03/2022     | 1                        | Boussinesq's theory and Problems                     | CoB-1,6<br>CO- 1,3,7                | K3                     | Text Book<br>1 & 3 |  |
| 3.                                                                                                | 01/03/2022     | 1                        | Burmister theory of pavement design                  | CoB-1,6<br>CO- 1,3,7                | К3                     | Text Book<br>1 & 3 |  |
| 4.                                                                                                | 02/03/2022     | 1                        | Determination of thickness of pavement               | CoB-1,6,2<br>CO- 1,3,7              | K3                     | Text Book<br>1 & 3 |  |
| 5.                                                                                                | 07/03/2022     | 1                        | California bearing ratio method                      | CoB-1,6<br>CO- 1,3,7                | K3                     | Text Book<br>1 & 3 |  |
| 6.                                                                                                | 08/03/2022     | 1                        | Rigid pavement stress analysis-<br>types of stresses | CoB-1,6<br>CO- 1,3,6,7              | K2                     | Text Book<br>1 & 3 |  |
| 7.                                                                                                | 14/03/2022     | 1                        | Design of joints in cement concrete pavements        | CoB-1,6<br>CO- 1,3,7                | К3                     | Text Book<br>1 & 3 |  |
| 8.                                                                                                | 14/03/2022     | 1                        | IRC specifications of rigid pavement design          | CoB-1,6<br>CO- 1,3,7                | K1                     | Text Book<br>1 & 3 |  |
| 9.                                                                                                | 15/03/2022     | 1                        | Design for slab thickness                            | CoB-1,3,2<br>CO- 1,3                | K2                     | Text Book<br>1 & 3 |  |
| 10.                                                                                               | 15/03/2022     | 1                        | Design of dowel bars                                 | CoB-1,3<br>CO- 1,3                  | K2                     | Text Book<br>1 & 3 |  |

**TEXT BOOKS**: 1. Highway Engineering-S.K. Khanna &C.E.G. Justo, Nemchand & Bros. 3. Principles of Pavement Design – E. J. Yoder, M. W. Witczak



### Department of Civil Engineering SCHEDULE OF INSTRUCTIONS UNIT PLAN

**Academic Year** : 2021-2022

Semester : II

UNIT NO: 4

Name of the Program : B.Tech

Year: IV Year

Course Code:GR18A4067

Section: A/B

Course/Subject : Pavement Design

Name of the Faculty : G.Swetha

Designation: Assistant Professor

**Dept.:** Civil Engineering

| Lesso<br>n No. | Date       | No. of<br>Periods | Topics / Sub - Topics                                                                | Objectives<br>&<br>Outcomes<br>Nos. | Blooms<br>Taxonomy | References           |
|----------------|------------|-------------------|--------------------------------------------------------------------------------------|-------------------------------------|--------------------|----------------------|
| 1.             | 22/03/2022 | 1                 | Flexible pavement<br>design-criteria                                                 | CoB- 1,3,6<br>CO- 1,3,4             | K1                 | Text Book<br>1,3 & 4 |
| 2.             | 22/03/2022 | 1                 | IRC method of design-<br>estimation of traffic (axle<br>loads, traffic distribution) | CoB- 1,3,6<br>CO- 1,3,4             | K3                 | Text Book<br>1,3 & 4 |
| 3.             | 28/03/2022 | 1                 | IRC method of design-<br>pavement thickness and<br>composition, Drainage<br>measures | CoB- 1,3,6<br>CO- 1,3,4             | К3                 | Text Book<br>1,3 & 4 |
| 4.             | 28/03/2022 | 1                 | Vehicle damage factor calculations                                                   | CoB- 1,3,6<br>CO- 1,3,4             | K2                 | Text Book<br>1,3 & 4 |
| 5.             | 29/03/2022 | 1                 | Rigid pavement design-<br>criteria                                                   | CoB- 1,3,6<br>CO- 1,3,4             | K1                 | Text Book<br>1,3 & 4 |
| 6.             | 29/03/2022 | 1                 | IRC method of rigid pavement design                                                  | CoB- 1,3,6<br>CO- 1,3,4             | K2                 | Text Book<br>1,3 & 4 |
| 7.             | 04/03/2022 | 1                 | PCA method of design                                                                 | CoB- 1,3,6<br>CO- 1,3,4             | K2                 | Text Book<br>1,3 & 4 |
| 8.             | 04/04/2022 | 1                 | Importance of joints in rigid pavements                                              | CoB- 1,3,6<br>CO- 1,3,4             | K1                 | Text Book<br>1,3 & 4 |
| 9.             | 05/04/2022 | 1                 | Types of joints, Use of tie<br>bars and dowel bars                                   | CoB- 1,3,6<br>CO- 1,3,7             | K1                 | Text Book<br>1,3 & 4 |

TEXT BOOKS: 1. Highway Engineering-S.K. Khanna &C.E.G. Justo, Nemchand & Bros.

3. Principles of Pavement Design – E. J. Yoder, M. W. Witczak

4. Highway and traffic Engineering-Subash Saxena

### Gokaraju Rangaraju Institute of Engineering and Technology

#### **Department of Civil Engineering**

### SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year: 2021-2022Semester: IIName of the Program: B.TechYear: IV YearCourse/Subject: Pavement DesignCName of the Faculty: G.SwethaDesignation:AssistantProfessor

UNIT NO: 5 ar Section: A Course Code:GR18A4067

Dont · Civil Engineering

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Designation: Assistant Professor |            |   | Dept.: Civil Engineering                      |                                       |    |                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------|---|-----------------------------------------------|---------------------------------------|----|----------------------|
| 1.1Construction, Preparation of<br>sub-grade $CoB-4,6$<br>$CO-3,7$ K1Text Book<br>$1,2 \& 4$ 2.12/04/20221Construction of<br>embankments & WBM<br>roads $CoB-4,6$<br>$CO-3,7$ K2Text Book<br>$1,2 \& 4$ 3.18/04/20221Construction of bituminous<br>pavements-Interface<br>treatment $CoB-4,6$<br>$CO-3,7$ K2Text Book<br>$1,2 \& 4$ 4.19/04/20221Penetration macadam,<br>Bituminous macadam &<br>Bituminous concrete $CoB-4,6$<br>$CO-3,7$ K2Text Book<br>$1,2 \& 4$ 5.25/04/20221Construction of built-up<br>spray grout, premixed<br>bituminous carpet $CoB-4,6$<br>$CO-3,7$ K2Text Book<br>$1,2 \& 4$ 6.26/04/20221Construction of cement<br>concrete roads- cement<br>concrete slab $CoB-4,6$<br>$CO-3,7$ K2Text Book<br>$1,2 \& 4$ 7.26/04/20221Construction of joints $CoB-4,6$<br>$CO-3,7$ K2Text Book<br>$1,2 \& 4$ 8.02/05/20221Pavement failures- in<br>Flexible, Rigid pavements $CoB-4,6$<br>$CO-3,7$ K2Text Book<br>$1,2 \& 4$ 9.02/05/20221Pavement evaluation- $CoB-4,6$<br>$CO-3,7$ K2Text Book<br>$1,2 \& 4$ |                                  | Date       |   | Topics / Sub - Topics                         | Outcomes                              |    | References           |
| 2.1.2.0 + 2.0.21embankments & WBM<br>roads $CoB- 4,6$<br>$CO- 3,7$ K21,2 & 43.18/04/20221Construction of bituminous<br>pavements-Interface<br>treatment $CoB- 4,6$<br>$CO- 3,7$ K2Text Book<br>$1,2 & 4$ 4.19/04/20221Penetration macadam,<br>Bituminous macadam &<br>Bituminous concrete $CoB- 4,6$<br>$CO- 3,7$ K2Text Book<br>$1,2 & 4$ 5.25/04/20221Construction of built-up<br>spray grout, premixed<br>bituminous carpet $CoB- 4,6$<br>$CO- 3,7$ K2Text Book<br>$1,2 & 4$ 6.26/04/20221Construction of cement<br>concrete roads- cement<br>concrete slab $CoB- 4,6$<br>$CO- 3,7$ K2Text Book<br>$1,2 & 4$ 7.26/04/20221Construction of joints $CoB- 4,6$<br>$CO- 3,7$ K2Text Book<br>$1,2 & 4$ 8.02/05/20221Pavement failures- in<br>Flexible, Rigid pavements $CoB- 4,6$<br>$CO- 3,7$ K2Text Book<br>$1,2 & 4$ 9.02/05/20221Pavement evaluation- $CoB- 4,6$<br>$CO- 3,7$ K2Text Book<br>$1,2 & 4$                                                                                                                      | 1.                               | 12/04/2022 | 1 | construction, Preparation of                  |                                       | K1 |                      |
| 3.16/0 / 120221pavements-Interface<br>treatment $CoB- 4,6$<br>$CO- 3,7$ K21.2 & 44.19/04/20221Penetration macadam,<br>Bituminous macadam &<br>Bituminous concrete $CoB- 4,6$<br>$CO- 3,7$ K2Text Book<br>$1,2 & 4$ 5.25/04/20221Construction of built-up<br>spray grout, premixed<br>bituminous carpet $CoB- 4,6$<br>$CO- 3,7$ K2Text Book<br>$1,2 & 4$ 6.26/04/20221Construction of cement<br>concrete roads- cement<br>concrete slab $CoB- 4,6$<br>$CO- 3,7$ K2Text Book<br>$1,2 & 4$ 7.26/04/20221Construction of joints $CoB- 4,6$<br>$CO- 3,7$ K2Text Book<br>$1,2 & 4$ 8.02/05/20221Pavement failures- in<br>Flexible, Rigid pavements $CoB- 4,6$<br>$CO- 3,7$ K2Text Book<br>$1,2 & 4$ 902/05/20221Pavement evaluation- $CoB- 4,6$<br>$CO- 3,7$ K2Text Book<br>$1,2 & 4$                                                                                                                                                                                                                                               | 2.                               | 12/04/2022 | 1 | embankments & WBM roads                       | · · · · · · · · · · · · · · · · · · · | K2 |                      |
| 4.1Bituminous macadam &<br>Bituminous concrete $CoB-4,6$<br>$CO-3,7$ K2 $1,2 \& 4$ 5. $25/04/2022$<br>$1$ 1Construction of built-up<br>spray grout, premixed<br>bituminous carpet $CoB-4,6$<br>$CO-3,7$ K2 $1,2 \& 4$ 6. $26/04/2022$<br>$1$ 1Construction of cement<br>concrete roads- cement<br>concrete slab $CoB-4,6$<br>$CO-3,7$ K2Text Book<br>$1,2 \& 4$ 7. $26/04/2022$<br>$1$ 1Construction of joints $CoB-4,6$<br>$CO-3,7$ K2Text Book<br>$1,2 \& 4$ 7. $26/04/2022$<br>$1$ 1Construction of joints $CoB-4,6$<br>$CO-3,7$ K2Text Book<br>$1,2 \& 4$ 8. $02/05/2022$<br>$1$ 1Pavement failures- in<br>Flexible, Rigid pavements $CoB-4,6$<br>$CO-3,7$ K2Text Book<br>$1,2 \& 4$ 9. $02/05/2022$ 1Pavement evaluation- $CoB-4,6$<br>$CO-3,7$ K2Text Book<br>$1,2 \& 4$                                                                                                                                                                                                                                                | 3.                               | 18/04/2022 | 1 | pavements-Interface                           |                                       | K2 |                      |
| 5.1spray grout, premixed<br>bituminous carpetCoB- 4,6<br>CO- 3,7K2 $1,2 \& 4$ 6.26/04/2022<br>11Construction of cement<br>concrete roads- cement<br>concrete slabCoB- 4,6<br>CO- 3,7K2Text Book<br>1,2 \& 47.26/04/2022<br>11Construction of jointsCoB- 4,6<br>CO- 3,7K2Text Book<br>1,2 & 48.02/05/2022<br>91Pavement failures- in<br>Flexible, Rigid pavementsCoB- 4,6<br>CO- 3,7K2Text Book<br>1,2 & 4902/05/2022<br>11Pavement evaluation-CoB- 4,6<br>CO- 3,7K2Text Book<br>1,2 & 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.                               | 19/04/2022 | 1 | Bituminous macadam &                          |                                       | K2 |                      |
| 6.1concrete roads- cement<br>concrete slab $CoB- 4, 6$<br>$CO- 3, 7$ K2 $1, 2 \& 4$ 7.26/04/20221Construction of joints $CoB- 4, 6$<br>$CO- 3, 7$ K2Text Book<br>$1, 2 \& 4$ 8.02/05/20221Pavement failures- in<br>Flexible, Rigid pavementsCoB- 4, 6<br>CO- 3, 7K2Text Book<br>$1, 2 \& 4$ 9.02/05/20221Pavement evaluation-CoB- 4, 6<br>CO- 3, 7K2Text Book<br>$1, 2 \& 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.                               | 25/04/2022 | 1 | spray grout, premixed                         |                                       | K2 |                      |
| 7.1Construction of joints $CO-3,7$ $K2$ $1,2 \& 4$ 8. $02/05/2022$ 1Pavement failures- in<br>Flexible, Rigid pavements $CoB-4,6$<br>$CO-3,7$ $K2$ Text Book<br>$1,2 \& 4$ 9 $02/05/2022$ 1Pavement evaluation- $CoB-4,6$<br>$CO-3,7$ $K2$ Text Book<br>$1,2 \& 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.                               | 26/04/2022 | 1 | concrete roads- cement                        |                                       | K2 |                      |
| 8.1Flexible, Rigid pavementsCO- 3,7K21,2 & 4902/05/20221Pavement evaluation-CoB- 4,6K2Text Book                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.                               | 26/04/2022 | 1 | Construction of joints                        | · · · · · · · · · · · · · · · · · · · | K2 |                      |
| Y K/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.                               | 02/05/2022 | 1 |                                               | · · · · · · · · · · · · · · · · · · · | K2 |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.                               | 02/05/2022 | 1 | Pavement evaluation-<br>Benkelman Beam method | CoB- 4,6<br>CO- 3,7                   | K2 | Text Book<br>1,2 & 4 |

**TEXT BOOKS**: 1. Highway Engineering-S.K. Khanna &C.E.G. Justo, Nemchand & Bros.

3. Principles of Pavement Design – E. J. Yoder, M. W. Witczak

4. Highway and traffic Engineering-Subash Saxena

Signature of HOD Date:

Signature of faculty Date:



### Gokaraju Rangaraju Institute of Engineering and Technology Department of

### **Civil Engineering**

### **LESSON PLAN**

**Academic Year** : 2021-2022

Semester : II

Unit No: 1

**Dept.:** Civil Engineering

Name of the Program : B.TechYear: IV YearSection: B

Course/Subject : Pavement Design Course Code: GR18A4067

Name of the Faculty :G.Swetha

**Designation:** Assistant Professor

Lesson No: <u>1</u> Duration of Lesson: <u>1 hr</u>

Lesson Title: Requirements of a pavement

### **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1.know the functional and structural requirements of a pavement

### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Road surface should be even along longitudinal profile to ensure safety and comfort.
- Structural strength of a pavement should be sufficient enough to sustain anticipated number of load repetitions.
- Sub-grade should be constructed well above the ground water level to keep the sub-grade relatively dry.

#### Assignment / Questions:

1. What are the various functional and structural requirements of a pavement?( CoB-1,3 : CO-1,2)



| Academic Year                                          | : 2021-2022       |                     |                    |             |  |
|--------------------------------------------------------|-------------------|---------------------|--------------------|-------------|--|
| Semester                                               | : II              |                     |                    | Unit No: 1  |  |
| Name of the Program                                    | <b>m</b> : B.Tech | Year: IV Ye         | ear                | Section: A  |  |
| Course/Subject                                         | : Pavement D      | esign               | <b>Course Code</b> | : GR18A4067 |  |
| GR14A4015Name of                                       | the Faculty       | : G.Swetha          |                    |             |  |
| Designation: Assistant Professor Dept.: Civil Engineer |                   |                     |                    |             |  |
| Lesson No: 2                                           | Duration of I     | Lesson: <u>1 hr</u> |                    |             |  |
| Lesson Title: Types                                    | of pavement       |                     |                    |             |  |

### **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1.know the classification of pavements based on their structural behavior.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Classification mainly depends on the force transferring mechanism if we apply an external load onto pavement.
- Flexible Pavements- Grain to grain contact and area of load distribution increases as we move down towards sub-grade
- Rigid Pavements- Load distribution through flexure (slab action) and very high in flexural resistance.

Assignment / Questions:

1. What are the various types of pavement and the respective constituting materials? ( CoB-1,3 : CO-1,2)  $\,$ 



### **LESSON PLAN**

| Semester                                       | : II              |                     |             | Unit No: 1               |  |
|------------------------------------------------|-------------------|---------------------|-------------|--------------------------|--|
| Name of the Program                            | <b>m</b> : B.Tech | Year: IV            | Year        | Section: A               |  |
| Course/Subject                                 | : Pavement De     | esign               | Course Code | : GR18A4067              |  |
| Name of the Faculty                            | : G.Swetha        |                     |             |                          |  |
| <b>Designation:</b> Assista                    | ant Professor     |                     |             | Dept.: Civil Engineering |  |
| Lesson No: <u>3</u>                            | Duration of I     | Lesson: <u>1 hr</u> |             |                          |  |
| Lesson Title: Functions of pavement components |                   |                     |             |                          |  |

### **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1.Understand the function of various pavement components such as sub-grade, base course & wearing course etc.

#### **TEACHING AIDS** : White Board, Marker

### **TEACHING POINTS** :

- Sub-grade: Level of compaction of sub-grade should be determined form the relation between dry density and optimum moisture content.
- Sub-grade need to be evaluated for structural soundness before laying further layers.
- Base & Sub-base courses: Stress transmitting medium to spread the surface wheel load to prevent consolidated settlements.
- Wearing course: To provide a smooth and comfortable riding

#### Assignment / Questions:

1. Write about the tests to be performed on pavement components and their significance? (CoB-1,3 : CO-1,2)



| Academic Year                                                                          | : 2021-2022       |                     |              |            |  |
|----------------------------------------------------------------------------------------|-------------------|---------------------|--------------|------------|--|
| Semester                                                                               | : II              |                     |              | Unit No: 1 |  |
| Name of the Program                                                                    | <b>m</b> : B.Tech | Year: IV Ye         | ear          | Section: A |  |
| Course/Subject                                                                         | : Pavement D      | esign               | Course Code: | GR18A4067  |  |
| Name of the Faculty                                                                    | : G.Swetha        |                     |              |            |  |
| Designation: Assistant Professor Dept.: Civil Engineeri                                |                   |                     |              |            |  |
| Lesson No: <u>4</u>                                                                    | Duration of I     | Lesson: <u>1 hr</u> |              |            |  |
| Lesson Title: Factors effecting pavement: Wheel load, tyre pressure & contact pressure |                   |                     |              |            |  |

### **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1.Understand and analyze various factors that effect pavement.

### **TEACHING AIDS** : White Board, Marker

### TEACHING POINTS :

- Standard axle loads for several roadways as per IRC and also traffic data are to be analyzed to fix the design wheel load.
- With constant tyre pressure the total load governs the stress on the top of sub-grade within allowable limits

Assignment / Questions:

1.What is the influence of tyre pressure and contact pressure on vertical stress distribution? Explain in detail.( CoB-1,3 : CO-1,2)



| Academic Year               | : 2021-2022       |                   |                    |                          |
|-----------------------------|-------------------|-------------------|--------------------|--------------------------|
| Semester                    | : II              |                   |                    | Unit No: 1               |
| Name of the Progra          | <b>m</b> : B.Tech | Year: IV          | Year               | Section: A               |
| Course/Subject              | : Pavement D      | esign             | <b>Course Code</b> | : GR18A4067              |
| Name of the Faculty         | : G.Swetha        |                   |                    |                          |
| <b>Designation:</b> Assista | ant Professor     |                   |                    | Dept.: Civil Engineering |
| Lesson No: 5                | Duration of I     | Lesson: <u>11</u> | <u>n</u>           |                          |
| Lesson Title: ESAL          | & ESWL conce      | ept               |                    |                          |

### **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1.convert all the loads into a particular standard axle load.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Indian road conditions speaks of variable traffic and vehicle. So, while designing a pavement, we need a common load to design for.
- We convert all the loads into a particular standard axle load, such that design will be easy. ( all other commercial vehicles into number of standard axles)

Assignment / Questions:

1.Draw the graph between ESWL and depth, both on log scale, when load is 'P' on each wheel, clear gap between wheels is 'd' and center to center spacing between wheels is 's'. (CoB-1,3 : CO-1,2)



| Academic Year                                                       | : 2021-2022                            |                           |  |  |
|---------------------------------------------------------------------|----------------------------------------|---------------------------|--|--|
| Semester                                                            | : II                                   | Unit No: 1                |  |  |
| Name of the Program                                                 | <b>n</b> : B.Tech <b>Year:</b> IV Year | Section: A                |  |  |
| Course/Subject                                                      | : Pavement Design Course               | e <b>Code</b> : GR18A4067 |  |  |
| Name of the Faculty : G.Swetha                                      |                                        |                           |  |  |
| <b>Designation:</b> Assistant Professor <b>Dept.:</b> Civil Enginee |                                        |                           |  |  |
| Lesson No: 6                                                        | <b>Duration of Lesson:</b> <u>1 hr</u> |                           |  |  |
| Lesson Title: Strength characteristics of pavement materials        |                                        |                           |  |  |

### **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. Evaluate pavement materials to use in different layers.

### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- California Bearing ratio test- to evaluated sub-grade soils for their suitability in pavement construction.
- Elastic moduli for sub-grade and base & sub-base courses using plate bearing test to find out the stresses under various loads.

Assignment / Questions:

1. What is displacement factor? Write down the factors that effect displacement factor. ( CoB-1,3 : CO-1,2)



| Academic Year               | : 2021-2022        |         |             |                          |
|-----------------------------|--------------------|---------|-------------|--------------------------|
| Semester                    | : II               |         |             | Unit No: 1               |
| Name of the Program         | <b>m</b> : B.Tech  | Year:   | IV Year     | Section: A               |
| Course/Subject              | : Pavement D       | esign   | Course Code | : GR18A4067              |
| Name of the Faculty         | : G.Swetha         |         |             |                          |
| <b>Designation:</b> Assista | ant Professor      |         |             | Dept.: Civil Engineering |
| Lesson No: 7                | <b>Duration of</b> | Lesson: | <u>1 hr</u> |                          |
| Lesson Title: Traffic       | analysis-ADT       | & AAD   | T           |                          |

### **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. Analyze traffic patterns over existing facilities and design new facilities such as intersections, signal timings etc.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Volume studies: Number of vehicles crossing a section of road per unit time in a selected period.
- Volume counts: Mechanical and Manual counts. Method of choice depends on parameter of interest.
- Average Daily Traffic and Annual Average Daily Traffic helps in deciding the relative importance of a oute in phasing the road development programme.

Assignment / Questions:

1. Explain the term traffic volume. What are the objects of carrying out traffic volume studies?(CoB-1,3 : CO-1,2)



### **LESSON PLAN**

| Academic Year                  | : 2021-2022       |          |                        |                          |
|--------------------------------|-------------------|----------|------------------------|--------------------------|
| Semester                       | : II              |          |                        | Unit No: 1               |
| Name of the Program            | <b>m</b> : B.Tech | Year:    | IV Year                | Section: A               |
| Course/Subject                 | : Pavement D      | esign    | Course Code            | : GR18A4067              |
| Name of the Faculty : G.Swetha |                   |          |                        |                          |
| <b>Designation:</b> Assista    | ant Professor     |          |                        | Dept.: Civil Engineering |
| Lesson No: <u>8</u>            | Duration of I     | Lesson:  | <u>1 hr</u>            |                          |
| Lesson Title: Probler          | ns on contact p   | oressure | and tyre pressure conc | cepts                    |

### **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. Analyze various factors that effect pavement

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Standard axle loads for several roadways as per IRC and also traffic data are to be analyzed to fix the design wheel load.
- With constant tyre pressure the total load governs the stress on the top of sub-grade within allowable limits

Assignment / Questions:

1. Given tyre pressure=0.56MPa and wheel load=40kN, then calculate the radius of contact area of tyre? (CoB-1,3 : CO-1,2)



| Academic Year               | : 2021-2022       |                     |             |                                 |
|-----------------------------|-------------------|---------------------|-------------|---------------------------------|
| Semester                    | : II              |                     |             | Unit No: 1                      |
| Name of the Program         | <b>m</b> : B.Tech | Year: IV Y          | 'ear        | Section: A                      |
| Course/Subject              | : Pavement D      | esign               | Course Code | : GR18A4067                     |
| Name of the Faculty         | : G.Swetha        |                     |             |                                 |
| <b>Designation:</b> Assista | ant Professor     |                     |             | <b>Dept.:</b> Civil Engineering |
| Lesson No: <u>9</u>         | Duration of I     | Lesson: <u>1 hr</u> |             |                                 |
| Lesson Title: Problem       | ms on ESWL c      | oncept.             |             |                                 |

### **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. convert all the loads into a particular standard axle load.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Indian road conditions speaks of variable traffic and vehicle. So, while designing a pavement, we need a common load to design for.
- We convert all the loads into a particular standard axle load, such that design will be easy. ( all other commercial vehicles into number of standard axles)

Assignment / Questions:

1. Calculate ESWL of a dual wheel assemble carrying 2004kg each for pavement thickness of 15,20,25cms. Centre to centre tyre spacing is 27cm and distance between the walls of the tyres is 11cm. (CoB-1,3 : CO-1,2)



| Academic Year                  | : 2021-2022                            |                          |  |  |
|--------------------------------|----------------------------------------|--------------------------|--|--|
| Semester                       | : 11                                   | Unit No: 1               |  |  |
| Name of the Program            | m : B.Tech Year: IV Year               | Section: A               |  |  |
| Course/Subject                 | : Pavement Design Course               | C <b>ode</b> : GR18A4067 |  |  |
| Name of the Faculty : G.Swetha |                                        |                          |  |  |
| <b>Designation:</b> Assista    | ant Professor                          | Dept.: Civil Engineering |  |  |
| Lesson No: <u>1</u> 0          | <b>Duration of Lesson:</b> <u>1 hr</u> |                          |  |  |
| Lesson Title: Details          | of bitumen elastic modulus             |                          |  |  |

### **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1.know the factors which influence elastic modulus of bitumen.

#### **TEACHING AIDS** : White Board, Marker

#### **TEACHING POINTS** :

- Bitumen modulus of elasticity Stress dependent value
- Visco-elastic property
- Temperature dependency
- Level of exposure to atmosphere

Assignment / Questions: 1.What is Visco-elasticity? Explain in detail.( CoB-1,3 : CO-1,2)



**LESSON PLAN** 

| : 2021-2022                                   |                                                                                                                                         |                                                                                                                                                                         |                                                                                                                                                                                                                           |  |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| : II                                          |                                                                                                                                         |                                                                                                                                                                         | Unit No: 2                                                                                                                                                                                                                |  |
| n : B.Tech Ye                                 | ear: IV Yea                                                                                                                             | ar                                                                                                                                                                      | Section: A                                                                                                                                                                                                                |  |
| : Pavement Design                             | n                                                                                                                                       | Course Code                                                                                                                                                             | : GR18A4067                                                                                                                                                                                                               |  |
| : G.Swetha                                    |                                                                                                                                         |                                                                                                                                                                         |                                                                                                                                                                                                                           |  |
| nt Professor                                  |                                                                                                                                         |                                                                                                                                                                         | Dept.: Civil Engineering                                                                                                                                                                                                  |  |
| Duration of Less                              | on: <u>1 hr</u>                                                                                                                         |                                                                                                                                                                         |                                                                                                                                                                                                                           |  |
| Lesson Title: Pavement Materials - Importance |                                                                                                                                         |                                                                                                                                                                         |                                                                                                                                                                                                                           |  |
| LESSON OBJEC                                  | CTIVES:                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                           |  |
| .]                                            | : II<br><b>n</b> : B.Tech <b>Ye</b><br>: Pavement Desig<br>: G.Swetha<br>nt Professor<br><b>Duration of Less</b><br>ent Materials - Imp | <ul> <li>: II</li> <li>n : B.Tech Year: IV Yea</li> <li>: Pavement Design</li> <li>: G.Swetha</li> <li>nt Professor</li> <li>Duration of Lesson: <u>1 hr</u></li> </ul> | <ul> <li>: II</li> <li>n : B.Tech Year: IV Year</li> <li>: Pavement Design Course Code:</li> <li>: G.Swetha</li> <li>nt Professor</li> <li>Duration of Lesson: <u>1 hr</u></li> <li>ent Materials - Importance</li> </ul> |  |

On completion of this lesson the student shall be able to:

1.understand the role of materials in pavement construction.

### **TEACHING AIDS** : White Board, Marker

### TEACHING POINTS :

- Subgrade soil
- Stone Aggregates
- Bituminous Materials
- Bituminous paving mixes
- Cement Concrete

Assignment / Questions:

1. What are the desirable properties of subgrade soil? (CoB-1,4 : CO-4,3)



| Academic Year                  | : 2021-2022      |                    |             |                          |
|--------------------------------|------------------|--------------------|-------------|--------------------------|
| Semester                       | : II             |                    |             | Unit No: 2               |
| Name of the Program            | n : B.Tech       | Year: IV           | Year        | Section: A               |
| Course/Subject                 | : Pavement De    | esign              | Course Code | GR18A4067                |
| Name of the Faculty : G.Swetha |                  |                    |             |                          |
| <b>Designation:</b> Assista    | nt Professor     |                    |             | Dept.: Civil Engineering |
| Lesson No: 2                   | Duration of I    | Lesson: <u>1 h</u> | <u>r</u>    |                          |
| Lesson Title: Aggreg           | ate properties a | & their impo       | ortance     |                          |

#### **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. understand the engineering properties of aggregates and their role in road construction.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Strength
- Hardness
- Toughness
- Durability
- Shape of aggregates
- Adhesion with bitumen

Assignment / Questions:

1. Explain the desirable properties of aggregates to be used in different types of pavement construction. (CoB-1,4:CO-1,3)



### **LESSON PLAN**

| Academic Year                     | : 2021-2022       |         |             |                          |
|-----------------------------------|-------------------|---------|-------------|--------------------------|
| Semester                          | : II              |         |             | Unit No: 2               |
| Name of the Program               | <b>m</b> : B.Tech | Year:   | IV Year     | Section: A               |
| Course/Subject                    | : Pavement D      | esign   | Course Code | : GR18A4067              |
| Name of the Faculty               | : G.Swetha        |         |             |                          |
| Designation: Assista              | ant Professor     |         |             | Dept.: Civil Engineering |
| Lesson No: <u>3</u>               | Duration of I     | Lesson: | <u>1 hr</u> |                          |
| Lesson Title: Tests on aggregates |                   |         |             |                          |
| INSTRUCTIONAL/LESSON OBJECTIVES   |                   |         |             |                          |

**INSTRUCTIONAL/LESSON OBJECTIVES:** On completion of this lesson the student shall be able to:

1. Evaluate stone aggregates to decide the suitability for use in construction.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Crushing test
- Abrasion test
- Impact test
- Soundness
- Shape test
- Specific gravity and water absorption test
- Bitumen adhesion test

Assignment / Questions:

1. Discuss the objects of carrying out each of these tests and their advantages & limitations.(CoB-1,4 : CO-1,3)



| Academic Year                           | : 2021-2022                                      | : 2021-2022 |                          |              |            |  |
|-----------------------------------------|--------------------------------------------------|-------------|--------------------------|--------------|------------|--|
| Semester                                | : II                                             |             |                          |              | Unit No: 2 |  |
| Name of the Program                     | <b>m</b> : B.Tech                                | Year:       | IV Ye                    | ar           | Section: A |  |
| Course/Subject                          | : Pavement D                                     | esign       |                          | Course Code: | GR18A4067  |  |
| Name of the Faculty                     | : G.Swetha                                       |             |                          |              |            |  |
| Designation: Assistant Professor        |                                                  |             | Dept.: Civil Engineering |              |            |  |
| Lesson No: <u>4</u>                     | son No: <u>4</u> Duration of Lesson: <u>1 hr</u> |             |                          |              |            |  |
| Lesson Title: Bitumen-Properties        |                                                  |             |                          |              |            |  |
| <b>INSTRUCTIONAL/LESSON OBJECTIVES:</b> |                                                  |             |                          |              |            |  |

On completion of this lesson the student shall be able to:

1. understand the properties of bitumen and its application in road construction. .

### **TEACHING AIDS** : White Board, Marker

### **TEACHING POINTS** :

- Adequacy of viscosity at mixing and compaction
- Non-susceptibility to temperature
- Durability
- Adequate affinity and adhesion with aggregates.

#### Assignment / Questions:

1.Discuss the desirable properties of bitumen. Compare tar and bitumen. (CoB-1,4 : CO-1,3)



| Academic Year               | : 2021-2022                     |                          |
|-----------------------------|---------------------------------|--------------------------|
| Semester                    | : II                            | Unit No: 2               |
| Name of the Program         | n : B.Tech Year: IV Year        | Section: A               |
| Course/Subject              | : Pavement Design Course Code   | : GR18A4067              |
| Name of the Faculty         | : G.Swetha                      |                          |
| <b>Designation:</b> Assista | nt Professor                    | Dept.: Civil Engineering |
| Lesson No: 5                | Duration of Lesson: <u>1 hr</u> |                          |
| Lesson Title: Tests o       | n Bitumen                       |                          |

## **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. evaluate bitumen for suitability in road construction.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Penetration tests
- Ductility tests
- Softening point test
- Viscosity tests
- Flash and Fire point test

#### Assignment / Questions:

1. What are the various tests carried out on bitumen? Briefly mention the principle and uses of each test. (CoB-1,4:CO-1,3)



| Academic Year               | : 2021-2022        |          |             |                          |
|-----------------------------|--------------------|----------|-------------|--------------------------|
| Semester                    | : II               |          |             | Unit No: 2               |
| Name of the Program         | <b>n</b> : B.Tech  | Year:    | IV Year     | Section: A               |
| Course/Subject              | : Pavement D       | esign    | Course Code | : GR18A4067              |
| Name of the Faculty         | : G.Swetha         |          |             |                          |
| <b>Designation:</b> Assista | ant Professor      |          |             | Dept.: Civil Engineering |
| Lesson No: 6                | <b>Duration of</b> | Lesson:  | <u>1 hr</u> |                          |
| Lesson Title: Emulsi        | ons- Types &       | Applicat | tions       |                          |

## **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. understand various types of emulsions and their uses in road construction.

#### **TEACHING AIDS** : White Board, Marker

#### TEACHING POINTS :

- Rapid setting (RS)- surface dressing
- Medium setting (MS) Open grade aggregate premix
- Slow setting (SS) Priming, fog seal, crack seal
- Surface treatments
- Tack coat & Prime coat

Assignment / Questions:

1.What are the functions of 'prime coat' 'tack coat' & 'seal coat' in bituminous construction? (CoB-1,4 : CO-1,3)



| Academic Year        | : 2021-2022                            |                          |
|----------------------|----------------------------------------|--------------------------|
| Semester             | : 11                                   | Unit No: 2               |
| Name of the Program  | <b>m</b> : B.Tech <b>Year:</b> IV Year | Section: A               |
| Course/Subject       | : Pavement Design Course Co            | de: GR18A4067            |
| Name of the Faculty  | : G.Swetha                             |                          |
| Designation: Assista | ant Professor                          | Dept.: Civil Engineering |
| Lesson No: 7         | Duration of Lesson: <u>1 hr</u>        |                          |
| Lesson Title: Bitumi | nous mixes-types                       |                          |

## **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1.know various types of bituminous mixes and also the properties & requirements of a good mix.

# **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Premix carpet, surface dressing, Bituminous macadam, DBM, SDBM, BC etc
- Factors to be considered: Stability, Bitumen content, voids, flexibility, workability, economy.

Assignment / Questions:

1. What are the desirable properties of bituminous mixes? What are the steps in bituminous mix design? Discuss briefly.(CoB-1,4 : CO-1,3)



| Academic Year        | : 2021-2022                            | <b>Date:</b> 01/02/2016  |
|----------------------|----------------------------------------|--------------------------|
| Semester             | : II                                   | Unit No: 2               |
| Name of the Program  | <b>m</b> : B.Tech <b>Year:</b> IV Year | Section: A               |
| Course/Subject       | : Pavement Design Course Code          | : GR18A4067              |
| Name of the Faculty  | : G.Swetha                             |                          |
| Designation: Assista | ant Professor                          | Dept.: Civil Engineering |
| Lesson No: 8         | <b>Duration of Lesson:</b> <u>1 hr</u> |                          |
| Lesson Title: Marsha | all method of mix design               |                          |

## **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. understand the principles of Marshall method of mix design.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Density-Void analysis
- Stability-flow test
- Plots b/w % of bitumen and various parameters

Assignment / Questions: 1.Explain briefly the Marshall method of design. (CoB-1,4 : CO-1,3)



| Academic Year               | : 2021-2022                            | Date: 02/02/2016         |
|-----------------------------|----------------------------------------|--------------------------|
| Semester                    | : II                                   | Unit No: 2               |
| Name of the Program         | <b>m</b> : B.Tech <b>Year:</b> IV Year | Section: A               |
| Course/Subject              | : Pavement Design Course Code          | e: GR18A4067             |
| Name of the Faculty         | : G.Swetha                             |                          |
| <b>Designation:</b> Assista | ant Professor                          | Dept.: Civil Engineering |
| Lesson No: <u>9</u>         | Duration of Lesson: <u>1 hr</u>        |                          |
| Lesson Title: Details       | of Volumetric analysis                 |                          |

## **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. Find out design parameters required for bituminous mix design.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Volume of VMA, compacted mix, VFA, air voids, asphalt, absorbed asphalt.
- Specific gravity of compacted mix
- Specific gravity of void less volume of paving mix.

#### Assignment / Questions:

1. The specific gravity of weight proportions of aggregate and bitumen are as under for the preparation of Marshall mix design. The volume and weight of one marshall specimen was found to be 475cc and 1100gms. Assuming absorption of bitumen in aggregate is zero, find  $V_v$ ,  $V_b$ , VMA & VFB. (CoB-1,3 : CO-1,2)

|            | A1   | A2   | A3   | A4   | В    |
|------------|------|------|------|------|------|
| Weight(gm) | 825  | 200  | 325  | 150  | 100  |
| S.G        | 2.63 | 2.51 | 2.46 | 2.43 | 1.05 |



| Academic Year               | : 2021-2022       |                     |                    |                          |
|-----------------------------|-------------------|---------------------|--------------------|--------------------------|
| Semester                    | : II              |                     |                    | Unit No: 2               |
| Name of the Program         | <b>m</b> : B.Tech | Year: IV Ye         | ear                | Section: A               |
| Course/Subject              | : Pavement De     | esign               | <b>Course Code</b> | : GR18A4067              |
| Name of the Faculty         | : G.Swetha        |                     |                    |                          |
| <b>Designation:</b> Assista | ant Professor     |                     |                    | Dept.: Civil Engineering |
| Lesson No: <u>1</u> 0       | Duration of I     | Lesson: <u>1 hr</u> |                    |                          |
| Lesson Title: Details       | of Marshall tes   | st                  |                    |                          |

#### **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1.understand the application of results of Marshall test in bituminous mix design

#### **TEACHING AIDS** : White Board, Marker

#### **TEACHING POINTS** :

- Graphs: % of bitumen Vs stability, flow value, unit weight, % voids in total mix, VFB.
- Optimum binder content
- Minimum VMA
- Mixing and compacting temperatures
- Test procedure
- Marshall stability and Flow values

#### Assignment / Questions:

1. The results of Marshall test for 5specimen are given below. Find the optimum bitumen content of mix. (CoB-1,4: CO-1,5,7)

| Bitumen content | Stability(kg) | Flow(units) | $V_{v}$ | VFB | Gm   |
|-----------------|---------------|-------------|---------|-----|------|
| 3               | 499.4         | 9.0         | 12.5    | 34  | 2.17 |
| 4               | 717.3         | 9.6         | 7.2     | 65  | 2.21 |
| 5               | 812.7         | 12.0        | 3.9     | 84  | 2.26 |
| 6               | 767.3         | 14.8        | 2.4     | 91  | 2.23 |
| 7               | 662.8         | 19.5        | 1.9     | 93  | 2.18 |



| Academic Year                                                   | : 2021-2022       | 2                   |                    |                          |  |
|-----------------------------------------------------------------|-------------------|---------------------|--------------------|--------------------------|--|
| Semester                                                        | : II              |                     |                    | Unit No: 3               |  |
| Name of the Progra                                              | <b>m</b> : B.Tech | Year: IV Y          | ear                | Section: A               |  |
| Course/Subject                                                  | : Pavement D      | Design              | <b>Course Code</b> | : GR18A4067              |  |
| Name of the Faculty                                             | : G.Swetha        |                     |                    |                          |  |
| <b>Designation:</b> Assist                                      | ant Professor     |                     |                    | Dept.: Civil Engineering |  |
| Lesson No: 1                                                    | Duration of ]     | Lesson: <u>1 hr</u> |                    |                          |  |
| Lesson Title: Flexible pavement stress analysis-Layer's concept |                   |                     |                    |                          |  |
| <b>INSTRUCTIONAL</b>                                            | /LESSON OB        | JECTIVES:           |                    |                          |  |

On completion of this lesson the student shall be able to:

1.understand the function of layers and their behavior under loads.

# **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Load transferring mechanism in flexible pavement.
- Composition of layers
- Elastic moduli of different layers
- Material characteristics and boundary conditions
- Allowable deflections in sub-grade.

Assignment / Questions:

1. What are the different types of layers using in flexible pavement construction and what is their composition? (CoB-1,2 : CO-1,3)



| Academic Year        | : 2021-2022        | 2                |             |                          |
|----------------------|--------------------|------------------|-------------|--------------------------|
| Semester             | : II               |                  |             | Unit No: 3               |
| Name of the Program  | <b>m</b> : B.Tech  | Year: I          | V Year      | Section: A               |
| Course/Subject       | : Pavement D       | Design           | Course Code | : GR18A4067              |
| Name of the Faculty  | : G.Swetha         |                  |             |                          |
| Designation: Assista | ant Professor      |                  |             | Dept.: Civil Engineering |
| Lesson No: 2         | <b>Duration of</b> | Lesson: <u>1</u> | hr          |                          |
| Lesson Title: Boussi | nesq's theory a    | and proble       | ms          |                          |

## **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. find out stresses in pavement layers under different loading conditions.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Assumptions in Boussinesq's theory
- Vertical stress- Derivation : Under a point load
- Vertical stress- Derivation: Under uniformly distributed load over a circular area.

Assignment / Questions:

1. Calculate intensity of vertical pressure due to point load of 4200Kg at a depth of 4m from the surface and a distance of 2m from the axis of loading. (CoB-1,2 : CO-1,3)



# **LESSON PLAN**

| Academic Year               | : 2021-2022                            | Date: 08/02/2016         |
|-----------------------------|----------------------------------------|--------------------------|
| Semester                    | : II                                   | Unit No: 3               |
| Name of the Program         | <b>n</b> : B.Tech <b>Year:</b> IV Year | Section: A               |
| Course/Subject              | : Pavement Design Course Code          | e: GR18A4067             |
| Name of the Faculty         | : G.Swetha                             |                          |
| <b>Designation:</b> Assista | nt Professor                           | Dept.: Civil Engineering |
| Lesson No: <u>3</u>         | <b>Duration of Lesson:</b> <u>1 hr</u> |                          |
| Lesson Title: Burmis        | ter theory of pavement design          |                          |
|                             |                                        |                          |

#### **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. find out stresses in pavement layers under different loading conditions.

# **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Assumptions in Burmister's theory
- Multi-later system- Methods of analysis
- Plate load test
- Derivation of expression for surface deflections

Assignment / Questions:

1. Calculate the rebound surface deflection on a single layer pavement under a wheel load of 40kN with a tyre pressure of 0.8MPa. The effective elastic modulus of subgrade may be taken as 40MPa and poisson's ratio of soil as 0.5 (CoB-1,2 : CO-1,3)



| Academic Year        | : 2021-2022                    |                    |             |                          |  |  |
|----------------------|--------------------------------|--------------------|-------------|--------------------------|--|--|
| Semester             | : II                           |                    |             | Unit No: 3               |  |  |
| Name of the Program  | <b>m</b> : B.Tech              | Year: IV Yea       | r           | Section: A               |  |  |
| Course/Subject       | : Pavement De                  | esign              | Course Code | : GR18A4067              |  |  |
| Name of the Faculty  | Name of the Faculty : G.Swetha |                    |             |                          |  |  |
| Designation: Assista | ant Professor                  |                    |             | Dept.: Civil Engineering |  |  |
| Lesson No: <u>4</u>  | Duration of L                  | esson: <u>1 hr</u> |             |                          |  |  |
| Lesson Title: Determ | nination of thick              | ness of paveme     | ent         |                          |  |  |

#### **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1.find out the thickness of pavement when allowable deflections on sub-sequent layers are known.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Allowable deflections
- Elastic moduli of different layers
- Thickness of pavement layers

Assignment / Questions:

1. Determine the required thickness of an airfield pavement based on Burmister's theory using the following plate load test data and input parameters.

Diameter of plate=75cm, pressure observed at 1.25mm deflection when the test conducted on subgrade=0.82Kg/cm<sup>2</sup> and on the base course of 16cm thickness=2.1Kg/ cm<sup>2</sup>, Design wheel load=23000Kg, Tyre pressure=15Kg/ cm<sup>2</sup> and the allowable deflection=0.125cm. ? (CoB-1,2 : CO-1,3)



**LESSON PLAN** 

| Academic Year         | : 2021-2022                            |                          |
|-----------------------|----------------------------------------|--------------------------|
| Semester              | : 11                                   | Unit No: 3               |
| Name of the Program   | <b>n</b> : B.Tech <b>Year:</b> IV Year | Section: A               |
| Course/Subject        | : Pavement Design Cou                  | rse Code: GR18A4067      |
| Name of the Faculty   | : G.Swetha                             |                          |
| Designation: Assista  | nt Professor                           | Dept.: Civil Engineering |
| Lesson No: 5          | Duration of Lesson: <u>1 hr</u>        |                          |
| Lesson Title: Califor | nia Bearing Ratio method               |                          |

# **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1..find out the thickness of pavement when CBR of sub-grade is known.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Standard proctor test
- Re-moulded sample
- Empirical design charts
- Estimation of traffic

Assignment / Questions:

1. From the results of CBR, a graph is plot between load & Penetration. Discuss about the shape of the graph and what it represents. (CoB-1,2:CO-1,3)



| Academic Year         | : 2021-2022    |                     |                    |                          |
|-----------------------|----------------|---------------------|--------------------|--------------------------|
| Semester              | : II           |                     |                    | Unit No: 3               |
| Name of the Program   | n : B.Tech     | Year: IV Ye         | ear                | Section: A               |
| Course/Subject        | : Pavement De  | esign               | <b>Course Code</b> | : GR18A4067              |
| Name of the Faculty   | : G.Swetha     |                     |                    |                          |
| Designation: Assista  | nt Professor   |                     |                    | Dept.: Civil Engineering |
| Lesson No: 6          | Duration of I  | Lesson: <u>1 hr</u> |                    |                          |
| Lesson Title: Rigid p | avement stress | analysis- Typ       | es of stresses     |                          |
|                       |                |                     |                    |                          |

## **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. understand different types of stresses in rigid pavements

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Wheel load stresses
- Frictional stresses
- Warping stresses
- Combined stresses at corner region

Assignment / Questions:

1.A cement concrete pavement of thickness 20cm rests over a WBM base course with modulus of reaction 30 kg/cm<sup>3</sup>. Find the load stresses at the edge and corner regions under a wheel load of 5100kg unit IRC stress charts. Assume a=15cm, E=  $3x10^{5}$ kg/ cm<sup>2</sup> and Poisson's ratio = 0.15. (CoB-1,2 : CO-1,3)



| Academic Year               | : 2021-2022                            |                          |
|-----------------------------|----------------------------------------|--------------------------|
| Semester                    | : 11                                   | Unit No: 3               |
| Name of the Program         | n: B.Tech Year: IV Year                | Section: A               |
| Course/Subject              | : Pavement Design Course Cod           | e: GR18A4067             |
| Name of the Faculty         | : G.Swetha                             |                          |
| <b>Designation:</b> Assista | nt Professor                           | Dept.: Civil Engineering |
| Lesson No: 7                | Duration of Lesson: <u>1 hr</u>        |                          |
| Lesson Title: Design        | of joints in cement concrete pavements |                          |

## **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1.design various types of joints in cement concrete pavements.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Expansion joints
- Contraction joints
- Warping joints
- Spacing of joints

Assignment / Questions:

1. Determine the spacing between contraction joints for 3.5m slab width having thickness of 0cm and f = 1.5, for plain cement concrete, allowable  $S_c = 0.8 \text{ kg/cm}^2$  (CoB-1,6 : CO-1,3,7)



| Academic Year                                             | : 2021-2022       |                  |             |                          |
|-----------------------------------------------------------|-------------------|------------------|-------------|--------------------------|
| Semester                                                  | : II              |                  |             | Unit No: 3               |
| Name of the Program                                       | <b>m</b> : B.Tech | Year: I          | V Year      | Section: A               |
| Course/Subject                                            | : Pavement D      | esign            | Course Code | : GR18A4067              |
| Name of the Faculty : G.Swetha                            |                   |                  |             |                          |
| Designation: Assista                                      | ant Professor     |                  |             | Dept.: Civil Engineering |
| Lesson No: <u>8</u>                                       | Duration of 1     | Lesson: <u>1</u> | hr          |                          |
| Lesson Title: IRC specifications of rigid pavement design |                   |                  |             |                          |

## **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. understand the standard recommendations of IRC for design of concrete pavements.

# **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Design wheel load
- Mean daily and annual temperatures
- Modulus of sub-grade reaction
- Flexural strength of cement concrete
- Calculation of stresses
- Design of other elements like joints.

#### Assignment / Questions:

1.Briefly outline the IRC recommendations for determining the thickness of cement concrete pavement. (CoB-1,6 : CO-1,3,7)



| Academic Year        | : 2021-2022                |                  |              |                          |
|----------------------|----------------------------|------------------|--------------|--------------------------|
| Semester             | : II                       |                  |              | Unit No: 3               |
| Name of the Program  | <b>m</b> : B.Tech <b>Y</b> | ear: IV Year     |              | Section: A               |
| Course/Subject       | : Pavement Desig           | gn <b>(</b>      | Course Code: | GR18A4067                |
| Name of the Faculty  | : G.Swetha                 |                  |              |                          |
| Designation: Assista | ant Professor              |                  |              | Dept.: Civil Engineering |
| Lesson No: 9         | Duration of Les            | son: <u>1 hr</u> |              |                          |
| Lesson Title: Design | of slab thickness          |                  |              |                          |

# **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. design the thickness of slab for cement concrete pavements.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Width of the slab
- Length of the slab
- Trial thickness-check for stresses
- Design thickness-traffic intensity

Assignment / Questions:

1. Discuss the critical combination of stresses due to wheel load and temperature effects.(CoB-1,6 : CO-1,3,7)



**Academic Year** : 2021-2022 Date: Semester : II Unit No: 3 Name of the Program : B.Tech Year: IV Year Section: A **Course/Subject** Course Code: GR18A4067 : Pavement Design Name of the Faculty : G.Swetha **Designation:** Assistant Professor **Dept.:** Civil Engineering Lesson No: 10 Duration of Lesson: 1 hr **Lesson Title:** Design of dowel bars

## **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1.provide joints with dowel bar system.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Load transfer capacity of dowel bar
- Shear in the bar
- Bending in the bar
- Length of embedment of dowel bar
- Spacing of dowel bars

Assignment / Questions:

1.Design the CC pavement thickness, expansion and contraction joint spacing, dowel & tie bars for a wheel load of 5100kg. Assume all data suitably. .(CoB-1,6 : CO-1,3,7)



# **LESSON PLAN**

| Academic Year                                            | : 2021-2022     |                   |              |                          |  |
|----------------------------------------------------------|-----------------|-------------------|--------------|--------------------------|--|
| Semester                                                 | : II            |                   |              | Unit No: 4               |  |
| Name of the Program                                      | n : B.Tech      | Year: IV Yea      | ar           | Section: A               |  |
| Course/Subject                                           | : Pavement D    | esign             | Course Code  | :: GR18A4067             |  |
| Name of the Faculty                                      | : G.Swetha      |                   |              |                          |  |
| <b>Designation:</b> Assista                              | ant Professor   |                   |              | Dept.: Civil Engineering |  |
| Lesson No: 1                                             |                 |                   |              |                          |  |
| <b>Duration of Lesson:</b>                               | <u>1 hr</u>     |                   |              |                          |  |
| Lesson Title: Flexible                                   | e pavement de   | sign criteria     |              |                          |  |
| INSTRUCTIONAL/                                           | LESSON OB       | JECTIVES:         |              |                          |  |
| On completion of this                                    | lesson the stu  | dent shall be ab  | le to:       |                          |  |
| 1.know the vital parar                                   | neters in the d | esign of flexible | e pavements. |                          |  |
| TEACHING AIDS                                            | : White I       | Board, Marker     |              |                          |  |
| TEACHING POINTS :                                        |                 |                   |              |                          |  |
| Rutting due                                              | to permanent    | deformation in    | subgrade     |                          |  |
| Rutting due to permanent deformation in bituminous layer |                 |                   |              |                          |  |
| <ul> <li>Fatigue cracking in bituminous layer</li> </ul> |                 |                   |              |                          |  |
|                                                          |                 |                   |              |                          |  |
|                                                          |                 |                   |              |                          |  |

Assignment / Questions:

1. What are the mechanistic parameters that control flexible pavement performance? (CoB-1,3,6 : CO-1,3,4)



| Academic Year                                             | : 2021-2022                            |                          |  |
|-----------------------------------------------------------|----------------------------------------|--------------------------|--|
| Semester                                                  | : II                                   | Unit No: 4               |  |
| Name of the Program                                       | <b>m</b> : B.Tech <b>Year:</b> IV Year | Section: A               |  |
| Course/Subject                                            | : Pavement Design Course Code          | : GR18A4067              |  |
| Name of the Faculty                                       | : G.Swetha                             |                          |  |
| <b>Designation:</b> Assista                               | unt Professor                          | Dept.: Civil Engineering |  |
| Lesson No: 2                                              | Duration of Lesson: <u>1 hr</u>        |                          |  |
| Lesson Title: IRC method of design: Estimation of traffic |                                        |                          |  |

## **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1.estimate the design traffic based on IRC method.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Commercial vehicles per day
- Traffic growth rate
- Design life
- Distribution of commercial traffic over the carriageway.
- Vehicle damage factor

Assignment / Questions:

1. Find out the design traffic in terms of cumulative number of standard axles. Annual growth rate=0.08, design life=15years, initial traffic=1259.7cvpd, LDF=0.75, VDF=3.5. (CoB-1,3,6 : CO-1,3,4)



# **LESSON PLAN**

| Academic Year                                                                             | : 2021-2022                            |                          |  |
|-------------------------------------------------------------------------------------------|----------------------------------------|--------------------------|--|
| Semester                                                                                  | : II                                   | Unit No: 4               |  |
| Name of the Program                                                                       | <b>n</b> : B.Tech <b>Year:</b> IV Year | Section: A               |  |
| Course/Subject                                                                            | : Pavement Design Course Code          | : GR18A4067              |  |
| Name of the Faculty                                                                       | : G.Swetha                             |                          |  |
| <b>Designation:</b> Assista                                                               | nt Professor                           | Dept.: Civil Engineering |  |
| Lesson No: <u>3</u>                                                                       | <b>Duration of Lesson:</b> <u>1 hr</u> |                          |  |
| Lesson Title: IRC method of design: Pavement thickness, composition and drainage measures |                                        |                          |  |

## **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. find out thickness of pavement using IRC method of design.

# **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Subgrade-Dry density and CBR
- Sub-base CBR
- Base course-composition
- Bituminous surfacing
- Thickness from design charts
- Drainage layer-Composition & standards

Assignment / Questions:

1. Design the pavement for construction of a new bypass with the following data. A=5600 cvpd, 4 lane divided carriageway, design life=15 years, subgrade CBR=5%, r =8%, VDF=4.5. (CoB-1,3,6 : CO-1,3,4)



| Academic Year                                    | : 2021-2022       | 2                   |             |                          |
|--------------------------------------------------|-------------------|---------------------|-------------|--------------------------|
| Semester                                         | : II              |                     |             | Unit No: 4               |
| Name of the Program                              | <b>m</b> : B.Tech | Year: IV Ye         | ear         | Section: A               |
| Course/Subject                                   | : Pavement D      | Design              | Course Code | : GR18A4067              |
| Name of the Faculty                              | : G.Swetha        |                     |             |                          |
| <b>Designation:</b> Assista                      | ant Professor     |                     |             | Dept.: Civil Engineering |
| Lesson No: <u>4</u>                              | Duration of ]     | Lesson: <u>1 hr</u> |             |                          |
| Lesson Title: Vehicle damage factor calculations |                   |                     |             |                          |
| INSTRUCTIONAL/LESSON OBJECTIVES:                 |                   |                     |             |                          |

On completion of this lesson the student shall be able to:

1.find out the damage induced by one commercial vehicle on the pavement.

**TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Total number of commercial vehicles
- Total number of standard axles

Assignment / Questions:

1. Derive the expression for the calculation of VDF. (CoB-1,3,6 : CO-1,3,4)



| Academic Year               | : 2021-2022                     |                          |
|-----------------------------|---------------------------------|--------------------------|
| Semester                    | : 11                            | Unit No: 3               |
| Name of the Program         | n : B.Tech Year: IV Year        | Section: A               |
| Course/Subject              | : Pavement Design Course Code   | : GR18A4067              |
| Name of the Faculty         | : G.Swetha                      |                          |
| <b>Designation:</b> Assista | nt Professor                    | Dept.: Civil Engineering |
| Lesson No: 5                | Duration of Lesson: <u>1 hr</u> |                          |
| Lesson Title: Rigid p       | avement design criteria.        |                          |
|                             |                                 |                          |

# **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. know vital parameters in the design of rigid pavements

# **TEACHING AIDS** : White Board, Marker

# TEACHING POINTS :

- Rut resistant surface layer
- Fatigue resistant bituminous layer (bottom)
- Surface layer to delay top-down cracking

#### Assignment / Questions:

1. What are the mechanistic parameters that control flexible pavement performance?. (CoB-1,3,6 : CO-1,3,4)



| Academic Year                                     | : 2021-2022       | 2                   |                    |                          |
|---------------------------------------------------|-------------------|---------------------|--------------------|--------------------------|
| Semester                                          | : II              |                     |                    | Unit No: 4               |
| Name of the Progra                                | <b>m</b> : B.Tech | Year: IV Ye         | ear                | Section: A               |
| Course/Subject                                    | : Pavement D      | Design              | <b>Course Code</b> | : GR18A4067              |
| Name of the Faculty                               | : G.Swetha        |                     |                    |                          |
| <b>Designation:</b> Assist                        | ant Professor     |                     |                    | Dept.: Civil Engineering |
| Lesson No: 6                                      | Duration of       | Lesson: <u>1 hr</u> |                    |                          |
| Lesson Title: IRC method of rigid pavement design |                   |                     |                    |                          |
| <b>INSTRUCTIONAL/LESSON OBJECTIVES:</b>           |                   |                     |                    |                          |

On completion of this lesson the student shall be able to:

1. design rigid pavements based on IRC method.

# **TEACHING AIDS** : White Board, Marker

# **TEACHING POINTS** :

- Design wheel load
- Mean daily and annual temperatures
- Modulus of sub-grade reaction
- Flexural strength of cement concrete
- Calculation of stresses
- Design of other elements like joints.

#### Assignment / Questions:

1.Design the pavement slab thickness by IRC method, using following data. Modulus of subgrade reaction=8kg/cm<sup>3</sup>, Present traffic intensity=1000cvpd, Design wheel load(P)=5100kg, Radius of contact area=15cm. (CoB-1,3,6 : CO-1,3,4)



| Academic Year        | : 2021-2022                            |                          |
|----------------------|----------------------------------------|--------------------------|
| Semester             | : II                                   | Unit No: 4               |
| Name of the Program  | <b>n</b> : B.Tech <b>Year:</b> IV Year | Section: A               |
| Course/Subject       | : Pavement Design Course C             | <b>Code</b> : GR14A4015  |
| Name of the Faculty  | : G.Swetha                             |                          |
| Designation: Assista | nt Professor                           | Dept.: Civil Engineering |
| Lesson No: 7         | Duration of Lesson: <u>1 hr</u>        |                          |
| Lesson Title: PCA m  | ethod of design.                       |                          |
|                      |                                        |                          |

## **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1.design rigid pavement based on PCA method.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Differential temperatures
- Flexural strength of concrete
- Modulus of rupture value considering 28 days strength.
- Stress ratio factor

Assignment / Questions:

1. What is stress ratio factor? Explain about it.(CoB-1,3,6 : CO-1,3,4)



| Academic Year                                         | : 2021-2022                            |                          |  |  |  |
|-------------------------------------------------------|----------------------------------------|--------------------------|--|--|--|
| Semester                                              | : II                                   | Unit No: 4               |  |  |  |
| Name of the Program                                   | <b>m</b> : B.Tech <b>Year:</b> IV Year | Section: A               |  |  |  |
| Course/Subject                                        | : Pavement Design Course C             | C <b>ode</b> : GR18A4067 |  |  |  |
| Name of the Faculty                                   | : G.Swetha                             |                          |  |  |  |
| <b>Designation:</b> Assista                           | ant Professor                          | Dept.: Civil Engineering |  |  |  |
| Lesson No: <u>8</u>                                   | <b>Duration of Lesson:</b> <u>1 hr</u> |                          |  |  |  |
| Lesson Title: Importance of joints in rigid pavements |                                        |                          |  |  |  |
| INSTRUCTIONAL/LESSON OBJECTIVES:                      |                                        |                          |  |  |  |

On completion of this lesson the student shall be able to:

1. understand the function of joints in rigid pavements.

# **TEACHING AIDS** : White Board, Marker

# **TEACHING POINTS** :

- Spacing and layout
- Load transfer at Transverse joints

Assignment / Questions:

1. What will happen if we don't provide joints in rigid pavements? Explain in detail. (CoB-1,3,6 : CO-1,3,4)



| Academic Year        | : 2021-2022                            |                          |
|----------------------|----------------------------------------|--------------------------|
| Semester             | : II                                   | Unit No: 4               |
| Name of the Program  | <b>n</b> : B.Tech <b>Year:</b> IV Year | Section: A               |
| Course/Subject       | : Pavement Design Course Code          | : GR18A4067              |
| Name of the Faculty  | : G.Swetha                             |                          |
| Designation: Assista | nt Professor                           | Dept.: Civil Engineering |
| Lesson No: 9         | Duration of Lesson: <u>1 hr</u>        |                          |
| Lesson Title: Types  | of joints                              |                          |

## **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. understand the types of joints in rigid pavements.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Longitudinal & Transverse.
- Expansion joints Maximum temperature variations
- Contraction joints Frictional resistance, extent of reinforcement etc
- Warping joints

Assignment / Questions:

1. The width of the expansion joint gap is 2.5cm in a cement concrete pavement. If the laying temperature is 10°C, and the maximum slab temperature in summer is 54°C, calculate the spacing between expansion joints. Assume co-efficient of thermal expansion of concrete as 10 x  $10^{-6}$ per °C. (CoB-1,3,6 : CO-1,3,4)



# **LESSON PLAN**

| Academic Year              | : 2021-2022        | 2                   |             |                          |
|----------------------------|--------------------|---------------------|-------------|--------------------------|
| Semester                   | : II               |                     |             | Unit No: 4               |
| Name of the Progra         | am : B.Tech        | Year: IV Y          | ear         | Section: A               |
| Course/Subject             | : Pavement D       | )esign              | Course Code | : GR18A4067              |
| Name of the Facult         | y : G.Swetha       |                     |             |                          |
| <b>Designation:</b> Assist | tant Professor     |                     |             | Dept.: Civil Engineering |
| Lesson No: <u>1</u> 0      | <b>Duration of</b> | Lesson: <u>1 hr</u> |             |                          |
| Lesson Title: Uses         | of tie-bars and d  | lowel-bars.         |             |                          |

# **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1.understand the application of tie-bars and dowel-bars in rigid pavement construction..

# **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Dowel bars-Expansion joints
- Tie bars- Longitudinal joints
- Load transfer capacity of dowel bar
- Shear, bending in the bar
- Frictional force at slab bottom
- Length of embedment of dowel bar
- Spacing of dowel bars, Spacing of tie bars

Assignment / Questions:

1.Design the CC pavement thickness, expansion and contraction joint spacing, dowel & tie bars for a wheel load of 5100kg. Assume all data suitably(CoB-1,2 : CO-1,3)



# **LESSON PLAN**

| Academic Year         | : 2021-2022                |                   |              | <b>Date:</b> 24/03/2016  |
|-----------------------|----------------------------|-------------------|--------------|--------------------------|
| Semester              | : II                       |                   |              | Unit No: 5               |
| Name of the Program   | <b>n</b> : B.Tech <b>Y</b> | ear: IV Yea       | r            | Section: A               |
| Course/Subject        | : Pavement Desig           | gn                | Course Code: | GR18A4067                |
| Name of the Faculty   | : G.Swetha                 |                   |              |                          |
| Designation: Assistan | nt Professor               |                   |              | Dept.: Civil Engineering |
| Lesson No: <u>1</u>   | Duration of Les            | sson: <u>1 hr</u> |              |                          |
| Lesson Title: Types o | f pavement const           | truction          |              |                          |
| NICEPICETONIA         |                            | 00000             |              |                          |

## **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1.know different methods of pavement construction and factors that govern the design.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Earth and gravel roads
- Soil stabilized roads
- WBM roads
- Bituminous roads
- Cement concrete roads

Assignment / Questions:

1. What are the factors that affect the selection of materials for base course and surface course? (CoB-2,5:CO-3,5)



| Academic Year               | : 2021-2022                            | Date: 28/03/2016         |
|-----------------------------|----------------------------------------|--------------------------|
| Semester                    | : II                                   | Unit No: 5               |
| Name of the Program         | <b>m</b> : B.Tech <b>Year:</b> IV Year | Section: A               |
| Course/Subject              | : Pavement Design Course Code:         | GR18A4067                |
| Name of the Faculty         | : G.Swetha                             |                          |
| <b>Designation:</b> Assista | unt Professor                          | Dept.: Civil Engineering |
| Lesson No: 2                | Duration of Lesson: <u>1 hr</u>        |                          |
| Lesson Title: Constru       | uction of embankments & WBM roads      |                          |

# **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1.know the method of construction of embankments & WBM roads.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Preparation of subgrade- soil compaction, gradation of aggregates, binding material, setting & drying.
- Embankment: Height, fill material, settlement, stability of foundations & stability of slopes
- Field control tests: Moisture content & dry density.
- WBM: Gradation requirements, Screenings, rolling, Lateral confinement, sprinkling and grouting, setting & drying, surface evenness, Rectification of defects.

Assignment / Questions:

1. Specify the materials required for construction of WBM roads. What are the uses and limitations of this type of road?(CoB-4,5 : CO-3,5)



# **LESSON PLAN**

| Academic Year                                                                                         | : 2021-2022                            |                          |  |  |  |
|-------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------|--|--|--|
| Semester                                                                                              | : II                                   | Unit No: 5               |  |  |  |
| Name of the Program                                                                                   | <b>n</b> : B.Tech <b>Year:</b> IV Year | Section: A               |  |  |  |
| Course/Subject                                                                                        | : Pavement Design Course Co            | <b>de</b> : GR18A4067    |  |  |  |
| Name of the Faculty                                                                                   | : G.Swetha                             |                          |  |  |  |
| <b>Designation:</b> Assista                                                                           | nt Professor                           | Dept.: Civil Engineering |  |  |  |
| Lesson No: <u>3</u>                                                                                   | <b>Duration of Lesson:</b> <u>1 hr</u> |                          |  |  |  |
| Lesson Title: Construction of bituminous pavements-Interface treatment                                |                                        |                          |  |  |  |
| <b>INSTRUCTIONAL/LESSON OBJECTIVES:</b><br>On completion of this lesson the student shall be able to: |                                        |                          |  |  |  |

1.know the methods of interface treatments .

# **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Prime coat
- Tack coat
- Bituminous surface dressing
- Seal coat

Assignment / Questions:

1. Write short notes on, Surface dressing and seal coat.CoB-4,5 : CO-3,5)



| Academic Year                  | : 2021-2022   |                     |                    |                          |  |
|--------------------------------|---------------|---------------------|--------------------|--------------------------|--|
| Semester                       | : II          |                     |                    | Unit No: 5               |  |
| Name of the Program            | n : B.Tech    | Year: IV Y          | ear                | Section: A               |  |
| Course/Subject                 | : Pavement D  | esign               | <b>Course Code</b> | : GR18A4067              |  |
| Name of the Faculty : G.Swetha |               |                     |                    |                          |  |
| Designation: Assista           | nt Professor  |                     |                    | Dept.: Civil Engineering |  |
| Lesson No: <u>4</u>            | Duration of I | Lesson: <u>1 hr</u> |                    |                          |  |
| Lesson Title: Penetra          | tion Macadam  | , Bituminous I      | Macadam & Bitu     | uminous Concrete         |  |

#### **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1.know the methods of construction of penetration macadam, bituminous macadam & bituminous concrete.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Specifications of materials Gradation (MORTH)
- Preparation of existing layer
- Tack coat/ prime coat application
- Premix preparation
- Placement
- Rolling and finishing the paving mix

Assignment / Questions:

1.What are materials required, plants and equipment and construction steps for the following methods of bituminous constructions: Penetration macadam, bituminous concrete & Bituminous macadam. (CoB-4,5: CO-3,5)



| Academic Year               | : 2021-2022      |                     |                |                          |
|-----------------------------|------------------|---------------------|----------------|--------------------------|
| Semester                    | : II             |                     |                | Unit No: 5               |
| Name of the Program         | n : B.Tech       | Year: IV Yea        | ar             | Section: A               |
| Course/Subject              | : Pavement De    | esign               | Course Code:   | GR18A4067                |
| Name of the Faculty         | : G.Swetha       |                     |                |                          |
| <b>Designation:</b> Assista | nt Professor     |                     |                | Dept.: Civil Engineering |
| Lesson No: 5                | Duration of I    | Lesson: <u>1 hr</u> |                |                          |
| Lesson Title Constru        | action of built- | un sprav grout      | premixed bitun | ninous carnet            |

Lesson Title: Construction of built-up spray grout, premixed bituminous carpet

## **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. Understand the methods of construction of built-up spray grout & premixed bituminous carpet.

# **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Specifications of materials Gradation (MORTH)
- Preparation of existing layer
- Tack coat/ prime coat application
- Premix preparation
- Rolling and finishing the paving mix
- Surface finish
- Opening to traffic

Assignment / Questions:

1. What are the materials required, plants and equipment and construction steps for the following methods of bituminous constructions: built-up spray grout & premixed bituminous carpet.(CoB-2: CO-5)



| Academic Year        | : 2021-2022       |                  |                     |                          |
|----------------------|-------------------|------------------|---------------------|--------------------------|
| Semester             | : II              |                  |                     | Unit No: 5               |
| Name of the Program  | <b>m</b> : B.Tech | Year: I          | V Year              | Section: A               |
| Course/Subject       | : Pavement D      | esign            | Course Code         | : GR18A4067              |
| Name of the Faculty  | : G.Swetha        |                  |                     |                          |
| Designation: Assista | ant Professor     |                  |                     | Dept.: Civil Engineering |
| Lesson No: 6         | Duration of ]     | Lesson: <u>1</u> | hr                  |                          |
| Lesson Title: Constr | uction of ceme    | nt concrete      | e roads-cement conc | rete slab                |

# **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. Understand the construction techniques of cement concrete slabs.

# **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Specifications of material
- Plants and equipment
- Construction steps : preparation of subgrade & subbase, placing of forms, batching of material & mixing, transporting and placing of concrete, compaction and finishing, belting, brooming & edging, curing of cement concrete.
- •

Assignment / Questions:

1. What are the advantages and drawbacks of cement concrete roads? Explain cement concrete slabs and their uses. (CoB-4 : CO-3)



| Academic Year               | : 2021-2022       |         |             |                          |
|-----------------------------|-------------------|---------|-------------|--------------------------|
| Semester                    | : II              |         |             | Unit No: 5               |
| Name of the Progra          | <b>m</b> : B.Tech | Year:   | IV Year     | Section: A               |
| Course/Subject              | : Pavement D      | esign   | Course Code | : GR18A4067              |
| Name of the Faculty         | : G.Swetha        |         |             |                          |
| <b>Designation:</b> Assista | ant Professor     |         |             | Dept.: Civil Engineering |
| Lesson No: 7                | Duration of ]     | Lesson: | <u>1 hr</u> |                          |
| Lesson Title: Constr        | uction of joints  |         |             |                          |

## **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. Understand various joints in cement concrete pavements and their methods of construction.

# **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Types of joints
- Arrangement of joints
- Joint filler
- Joint sealer
- Reinforcement

Assignment / Questions: 1.Discuss the object of expansion and contraction joints.(CoB-4 : CO-3)



| Academic Year               | : 2021-2022                         |                    |                          |
|-----------------------------|-------------------------------------|--------------------|--------------------------|
| Semester                    | : II                                |                    | Unit No: 5               |
| Name of the Program         | n: B.Tech Year: IV                  | / Year             | Section: A               |
| Course/Subject              | : Pavement Design                   | <b>Course Code</b> | : GR18A4067              |
| Name of the Faculty         | : G.Swetha                          |                    |                          |
| <b>Designation:</b> Assista | nt Professor                        |                    | Dept.: Civil Engineering |
| Lesson No: <u>8</u>         | <b>Duration of Lesson:</b> <u>1</u> | hr                 |                          |
| Lesson Title: Paveme        | nt failures-In flexible pa          | vements            |                          |

## **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. Understand the types of failures and causes of failures in flexible pavements.

#### **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Failures in subgrade inadequate stability, excessive stress application
- Failures in subbase or base course loss of binding action, loss of base course materials, inadequate wearing course, lack of lateral confinement for the granular base course.
- Failure in wearing course

Assignment / Questions:

1. What are the various types of failure in flexible pavement? Explain the causes.. (CoB-4,5 CO-3,5)



| Academic Year                             | : 2021-2022                            |             |                          |  |  |
|-------------------------------------------|----------------------------------------|-------------|--------------------------|--|--|
| Semester                                  | : II                                   |             | Unit No: 5               |  |  |
| Name of the Program                       | <b>m</b> : B.Tech <b>Year:</b> IV Year |             | Section: A               |  |  |
| Course/Subject                            | : Pavement Design C                    | ourse Code: | GR18A4067                |  |  |
| Name of the Faculty                       | : G.Swetha                             |             |                          |  |  |
| <b>Designation:</b> Assista               | ant Professor                          |             | Dept.: Civil Engineering |  |  |
| Lesson No: 9                              | <b>Duration of Lesson:</b> <u>1 hr</u> |             |                          |  |  |
| Lesson Title: Failures in Rigid pavements |                                        |             |                          |  |  |
| <b>INSTRUCTIONAL</b>                      | LESSON OBJECTIVES:                     |             |                          |  |  |

On completion of this lesson the student shall be able to:

1. Understand the types of failures and causes of failures in Rigid pavements.

# **TEACHING AIDS** : White Board, Marker

TEACHING POINTS :

- Scaling of cement concrete
- Shrinkage cracks
- Spalling of joints
- Warping of cracks
- Mud pumping
- Structural cracks

Assignment / Questions:

1. Explain the various types of failures in cement concrete pavements and their causes.(CoB-4,5 : CO-3,5)



| Academic Year                                            | : 2021-2022       |         |             |                          |
|----------------------------------------------------------|-------------------|---------|-------------|--------------------------|
| Semester                                                 | : II              |         |             | Unit No: 5               |
| Name of the Program                                      | <b>m</b> : B.Tech | Year:   | IV Year     | Section: A               |
| Course/Subject                                           | : Pavement D      | esign   | Course Code | : GR18A4067              |
| Name of the Faculty : G.Swetha                           |                   |         |             |                          |
| Designation: Assistant Professor                         |                   |         |             | Dept.: Civil Engineering |
| <b>Lesson No:</b> <u>1</u> 0                             | Duration of l     | Lesson: | <u>1 hr</u> |                          |
| Lesson Title: Pavement evaluation- Benkelman Beam method |                   |         |             |                          |

## **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

1. Evaluate the existing pavements using Benkelman Beam apparatus.

**TEACHING AIDS** : White Board, Marker

## **TEACHING POINTS** :

- Structural evaluation
- Functional evaluation
- Overlay design
- Benkelman beam : Function, Operation, Rebound deflection, Analysis of results

Assignment / Questions: 1.Explain the principle and uses of Benkelman Beam test. (CoB-4,5 : CO-3,5)



## Gokaraju Rangaraju Institute of Engineering and Technology Department of Civil Engineering

# **EVALUATION STRATEGY**

Academic Year: 2021-2022Semester: IIName of the Program: B.TechYear:IV YearSection: ACourse/Subject: Pavement DesignCourse Code:GR18A4067Name of the Faculty: G.SwethaDept.: Civil Engineering

1. TARGET:

#### a) Percentage for pass: 87%

b) Percentage of class:

| First class with distinction | 47  |
|------------------------------|-----|
| First class                  | 52  |
| Pass class                   | 32  |
| Total strength               | 133 |

#### 2. COURSE PLAN& CONTENT DELIVERY

• Total number of 57 lecture classes and 10 tutorial classes to impart theoretical and practical knowledge on pavement design & evaluation

### **METHOD OF EVALUATION**

| a. | Internal Examination      | 2 |
|----|---------------------------|---|
| b. | Assignments/Quiz/Seminars | 5 |
| c. | Final Examination 73      | 1 |

#### 3. METHOD OF EVALUATION

3.1 Continuous assessment examinations:

**1. Assignments:** Assignments to assess the knowledge of student on numerical ability and logical thinking in solving practical problems of pavement design and evaluation.

**2. Internal Examinations**: Internal examinations to assess the overall knowledge of student on Pavement Design.

- 3.2 External ExaminationTo test their ability in dealing with analytical concepts of Pavement Design and to approve their abilities learnt during the course.
- To test their ability in dealing with analytical concepts of Pavement Design and to approve their abilities learnt during the course.

4. List out any new topic(s) or any innovation you would like to introduce in teaching the subjects in this Semester.

• To introduce Falling Weight Deflectometer and its diverse uses in the pavement evaluation

Signature of HOD

Signature of faculty

Date:

Date:



## Gokaraju Rangaraju Institute of Engineering and Technology Assessment in relation to CO's and COB's

## Assessment:

- 1. Assignement
- 2. Internal Examination
- 3. External Examination
- 4. Practical Projects
- 5. Viva

| Course Outcomes<br>Assessments | 1 | 2 | 3 | 4 | 5 |
|--------------------------------|---|---|---|---|---|
| 1                              | Х |   |   |   |   |
| 2                              |   | Х |   |   |   |
| 3                              |   |   | X |   |   |
| 4                              |   |   |   | X |   |
| 5                              |   |   |   |   | Х |

| Course Objectives<br>Assessments | 1 | 2 | 3 | 4 | 5 |
|----------------------------------|---|---|---|---|---|
| 1                                | X |   |   |   |   |
| 2                                |   | Х |   |   |   |
| 3                                |   |   | Х |   |   |
| 4                                |   |   |   | Х |   |
| 5                                |   |   |   |   | Х |

## Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

## Mappings of CO's, COB's Vs PO's, POB's

## **Course Objectives - Course Outcomes Relationship Matrix**

| Course Outcomes<br>Course Objectives | 1 | 2 | 3 | 4 | 5 |  |
|--------------------------------------|---|---|---|---|---|--|
| 1                                    | Х |   |   |   |   |  |
| 2                                    |   | Х |   |   |   |  |
| 3                                    |   |   | X |   |   |  |
| 4                                    |   |   |   | Х |   |  |
| 5                                    |   |   |   |   | X |  |

|                |                                |                                                                                                                                          |                 | Programme Outcomes |   |   |   |   |   |   |   |   |   |   |   |                  |                  |
|----------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|---|---|---|---|---|---|---|---|---|---|---|------------------|------------------|
| Code           | Subject                        | Course Outcomes                                                                                                                          | Course Outcomes |                    | b | c | d | e | f | æ | h | Ι | j | K | 1 | P<br>0<br>s<br>1 | P<br>0<br>5<br>2 |
| III Year I Sem | nester                         |                                                                                                                                          |                 |                    |   |   |   |   |   |   |   |   |   |   |   |                  |                  |
| GR18A4067      | Pavement<br>Analysis<br>Design | Illustratehighwaydesignmethods.constraintsandcontrolling factors.Apply the designstandards in&designing principalelements of thehighway. |                 | M                  | M | L |   | M | M | Н |   | M |   | H | M |                  | N                |
|                |                                | Predict the resource<br>constraints and<br>utilize the available                                                                         |                 | L                  | L | L |   | М | L | М | M | М | L | М | M |                  |                  |

|                 |         |   | - | - | - |   |   | - | - |   |   | - | - |   |
|-----------------|---------|---|---|---|---|---|---|---|---|---|---|---|---|---|
| materials       | in a    |   |   |   |   |   |   |   |   |   |   |   |   |   |
| sustainable w   | ay.     |   |   |   |   |   |   |   |   |   |   |   |   |   |
| Examine the     | basic   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| parameter of    | traffic |   |   |   |   |   |   |   |   |   |   |   |   |   |
| engineering a   | and the |   |   |   |   |   |   |   |   |   |   |   |   |   |
| methods whice   | ch help |   |   |   |   |   |   |   |   |   |   |   |   |   |
| to estimate th  | ose     |   |   |   |   |   |   |   |   |   |   |   |   |   |
| parameters.     |         |   |   |   |   |   |   |   |   |   |   |   |   |   |
|                 | Н       | Н | М | Н |   | L | L | М |   | М |   | М |   | М |
| Recognize the   | e       |   |   |   |   |   |   |   |   |   |   |   |   |   |
| major failure   | modes   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| of flexible and | d rigid |   |   |   |   |   |   |   |   |   |   |   |   |   |
| pavement and    | l helps |   |   |   |   |   |   |   |   |   |   |   |   |   |
| in maintaining  | g them  |   |   |   |   |   |   |   |   |   |   |   |   |   |
| properly.       |         |   |   |   |   |   |   |   |   |   |   |   |   |   |
|                 | М       | М | L | Н |   | М | Н | М | М | М | L | Н | М | н |



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

| GR18A4067/ Pavement Design | Course Outcomes |   |   |   |   |  |
|----------------------------|-----------------|---|---|---|---|--|
| Course Objectives          | 1               | 2 | 3 | 4 | 5 |  |
| 1                          | Х               |   |   |   |   |  |
| 2                          |                 | X |   |   |   |  |
| 3                          |                 |   | Х |   |   |  |
| 4                          |                 |   |   | Х |   |  |
| 5                          |                 |   |   |   | Х |  |

# MAPPING

#### Assessments

- 1. Assignment 2. Internal Examination 3. External Examination
- 4. Practical Projects 5. Viva

| GR18A4067/ Pavement Design | Course Outcomes |   |   |   |   |  |
|----------------------------|-----------------|---|---|---|---|--|
| Assessments                | 1               | 2 | 3 | 4 | 5 |  |
| 1                          | X               | Х | Х | Х | Х |  |
| 2                          | X               | Х | Х | Х | Х |  |
| 3                          | X               | Х | Х | Х | Х |  |
| 4                          |                 |   |   |   |   |  |
| 5                          |                 |   |   |   |   |  |

| GR18A4067/<br>Pavement Design | Course Objectives |   |   |   |   |  |
|-------------------------------|-------------------|---|---|---|---|--|
| Assessments                   | 1                 | 2 | 3 | 4 | 5 |  |
| 1                             | Х                 | Х | Х | Х | Х |  |
| 2                             | Х                 | Х | Х | Х | Х |  |
| 3                             | Х                 | Х | Х | Х | Х |  |
| 4                             |                   |   |   |   |   |  |
| 5                             |                   |   |   |   |   |  |

### **Rubric Template**

**Academic Year** : 2021-2022

Semester : II

Section: A

Name of the Program : B.Tech

ign Course Code : GR18A4067

Year: III Year

Course/Subject : Pavement Design

**Designation:** Assistant Professor

**Dept.:** Civil Engineering

|                                            |                                                                                                             | Beginning                                                                                                       | Developing                                                                                               | Reflecting<br>Development                                                                                       | Accomplished                                                                                                                               | Exemplary                                                                                                                                                                          | Score |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Name<br>of the<br>Student                  | Performance<br>Criteria                                                                                     | 1                                                                                                               | 2                                                                                                        | 3                                                                                                               | 4                                                                                                                                          | 5                                                                                                                                                                                  |       |
|                                            | Level of<br>knowledge on<br>types of<br>pavements and<br>methods of<br>design                               | Low level of<br>knowledge on<br>different<br>pavements, and<br>factors effecting<br>the structural<br>design.   | Able to<br>understand the<br>types of<br>pavement and<br>methods of<br>design                            | Ability to<br>explain the<br>basic difference<br>between various<br>pavements and<br>their designing<br>methods | Full<br>knowledge on<br>different types<br>of pavements,<br>the structural<br>design<br>methods and<br>the data<br>required for<br>design. | Analyzing and<br>application of<br>knowledge on<br>design methods<br>in designing<br>different layers<br>of pavement.                                                              |       |
| 18241<br>A0117<br>CHAD<br>A<br>RUCHI<br>TA | Level of<br>knowledge on<br>characteristics<br>of pavement<br>materials and<br>their optimum<br>utilization | Low level of<br>knowledge on<br>characteristics<br>of pavement<br>materials and<br>their optimum<br>utilization | Able to<br>understand the<br>characteristics<br>of pavement<br>materials and<br>their role in<br>design. | Ability to apply<br>the knowledge<br>of materials in<br>the design of<br>pavement layers                        | Full<br>Knowledge on<br>material<br>characteristics<br>and optimum<br>utility of<br>materials in<br>the design of<br>pavements             | Analyzing and<br>application of<br>knowledge on<br>pavement<br>materials in the<br>design of<br>different<br>pavement layers<br>in an optimum<br>and sustainable<br>manner         |       |
|                                            | Level of<br>knowledge on<br>pavement<br>evaluation and<br>maintenance.                                      | Low level of<br>knowledge on<br>methods of<br>pavement<br>evaluation                                            | Able to<br>understand the<br>importance and<br>methods of<br>pavement<br>evaluation.                     | Ability to apply<br>the knowledge<br>on pavement<br>evaluation in<br>evaluating<br>existing<br>pavements.       | Full<br>knowledge on<br>methods of<br>pavement<br>evaluation and<br>the need for<br>periodical<br>maintenance                              | Analyzing and<br>application of<br>knowledge in the<br>functional and<br>structural<br>evaluation of<br>pavements under<br>various<br>conditions to<br>maintain it<br>periodically |       |

**Objectives:** To learn the design and evaluation methods of pavements.

#### Students Outcomes: Learn application of design and evaluation methods including Indian Standards Gokaraju Rangaraju Institute of Engineering and Technology

### **Department of Civil Engineering**

## **COURSE COMPLETION STATUS**

Course Code: GR14A4015

**Academic Year** : 2021-2022

Semester : II

Name of the Program : B.TechYear: IV YearSection: A&B

**Course/Subject** : Pavement Design

Name of the Faculty : G.Swetha

Designation: Assistant Professor

Actual Date of Completion & Remarks, if any

| Units  | Remarks         | No. of Objectives<br>Achieved | No. of Outcomes<br>Achieved |
|--------|-----------------|-------------------------------|-----------------------------|
| Unit 1 | Covered on time | 1                             | 1                           |
| Unit 2 | Covered on time | 2                             | 2                           |
| Unit 3 | Covered on time | 3                             | 3                           |
| Unit 4 | Covered on time | 4                             | 4                           |
| Unit 5 | Covered on time | 5                             | 5                           |

Signature of HOD

Date:

Signature of faculty

**Dept.:** Civil Engineering

Date:



### **Department of Civil Engineering**

## **TUTORIAL SHEET - 1**

| Academic Year        | : 2021-2022   |              |             | Date:                           |
|----------------------|---------------|--------------|-------------|---------------------------------|
| Semester             | : II          |              |             |                                 |
| Name of the Program  | n : B.Tech    | Year: IV Ye  | ar          | Section: A                      |
| Course/Subject       | : Pavement De | esign        | Course Code | GR18A4067                       |
| Name of the Faculty  | : G.Swetha    |              |             |                                 |
| Designation: Assista | nt Professor  |              |             | <b>Dept.:</b> Civil Engineering |
| This Tutorial corres | ponds to Unit | <b>No.</b> 1 |             |                                 |

Q1. Write down a short note on types of pavements and the basic difference between them.

Q2. Estimate design traffic for a two lane road, when ADT=4000cvpd (two way), VDF=5, Design life= 15 years, Rate of growth= 7%.

Q3.A set of dual tyres has a total load of 4090kg, a contact radius of 11.4cm and a center to center spacing of 34.3cm. Find ESWL at a depth of 34.3cm.

Q4.Let number of load repetitions expected by 80kN standard axle is 1000, 160kN is 100 and 40kN is 1000. Find the equivalent axle load.

Objective Nos.: 1,3,5

Outcome Nos.: 1,2

Signature of HOD

Signature of faculty



Date: Date: Gokaraju Rangaraju Institute of Engineering and Technology **Department of Civil Engineering** 

#### **TUTORIAL SHEET - 2**

**Academic Year** : 2021-2022

Semester : II

Name of the Program : B.Tech Year: IV Year Section: A

**Course/Subject** : Pavement Design

Course Code: GR18A4067

Name of the Faculty : G.Swetha

**Designation:** Assistant Professor

**Dept.:** Civil Engineering

#### This Tutorial corresponds to Unit No. 2

Q1. The results of Marshall test for 5specimen are given below. Find the optimum bitumen content of mix. (CoB-1,4 : CO-1,5,7)

| Bitumen content | Stability(kg) | Flow(units) | $V_{ m v}$ | VFB | Gm   |
|-----------------|---------------|-------------|------------|-----|------|
| 3               | 499.4         | 9.0         | 12.5       | 34  | 2.17 |
| 4               | 717.3         | 9.6         | 7.2        | 65  | 2.21 |
| 5               | 812.7         | 12.0        | 3.9        | 84  | 2.26 |
| 6               | 767.3         | 14.8        | 2.4        | 91  | 2.23 |
| 7               | 662.8         | 19.5        | 1.9        | 93  | 2.18 |

Q2. Explain the desirable properties of aggregates to be used in different types of pavement construction

Q3. Explain briefly the Marshall method of design

Objective Nos.: 1,4

Outcome Nos.: 5,3

Signature of HOD

Date:

Signature of faculty

Date:



**Department of Civil Engineering** 

### **TUTORIAL SHEET - 3**

**Academic Year** : 2021-2022

Semester : II

**Course/Subject** 

Name of the Program : B.Tech Year: IV Year

: Pavement Design

Section: A

Course Code: GR18A4067

Name of the Faculty : G.Swetha

Designation: Assistant Professor

**Dept.:** Civil Engineering

This Tutorial corresponds to Unit No. 3

Q1. What are the assumptions in the Boussinesq's theory? Derive the expression for Vertical

stress in a soil mass.

Q2. Determine the required thickness of an airfield pavement based on Burmister's theory using the following plate load test data and input parameters.

Diameter of plate=75cm, pressure observed at 1.25mm deflection when the test conducted on subgrade=0.82Kg/cm<sup>2</sup> and on the base course of 16cm thickness=2.1Kg/ cm<sup>2</sup>, Design wheel load=23000Kg, Tyre pressure=15Kg/ cm<sup>2</sup> and the allowable deflection=0.125cm.

Q3. Calculate the rebound surface deflection on a single layer pavement under a wheel load of 40kN with a tyre pressure of 0.8MPa. The effective elastic modulus of subgrade may be taken as 40MPa and poisson's ratio of soil as 0.5.

Objective Nos.: 1,3

Outcome Nos.: 1,2

Signature of HOD

Signature of faculty



## **Department of Civil Engineering**

## **TUTORIAL SHEET - 4**

**Academic Year** : 2021-2022

Semester : II

Name of the Program : B.Tech Year: IV Year

Course/Subject : Pavement Design

Name of the Faculty : G.Swetha

Designation: Assistant Professor

**Dept.:** Civil Engineering

Section: A

Course Code: GR18A4067

This Tutorial corresponds to Unit No. 4

Q1. Design the pavement slab thickness by IRC method, using following data. Modulus of subgrade reaction=8kg/cm<sup>3</sup>, Present traffic intensity=1000cvpd, Design wheel load(P)=5100kg, Radius of contact area=15cm.

Q2. What is stress ratio factor? Explain about it

Q3. Design the CC pavement thickness, expansion and contraction joint spacing, dowel & tie bars for a wheel load of 5100kg. Assume all data suitably

Objective Nos.: 1,3,5

Outcome Nos.: 1,3,4



**Department of Civil Engineering** 

## **ASSIGNMENT SHEET – 1**

**Academic Year** : 2021-2022

Semester : II

Name of the Program : B.Tech Year: IV Year

**Course/Subject** : Pavement Design

Section: A

Course Code: GR18A4067

Name of the Faculty : G.Swetha

Designation: Assistant Professor

**Dept.:** Civil Engineering

This Assignment corresponds to Unit No. 1

Q1. Given tyre pressure=0.56MPa and wheel load=40kN, then calculate the radius of contact area of tyre?

Q2. The number of load repetitions by 80kN standard axle is 1000, 160kN is 100 and 40kN is 10,000. Find the equivalent number of standard axles?

Q3. Calculate ESWL of a dual wheel assemble carrying 2004kg each for pavement thickness of 15,20,25cms. Centre to centre tyre spacing is 27cm and distance between the walls of the tyres is 11cm.

Objective Nos.: 1,3,5

Outcome Nos.: 1,2

Signature of HOD

Date:

Signature of faculty

Date:

## Gokaraju Rangaraju Institute of Engineering and Technology Department of Civil Engineering

#### **ASSIGNMENT SHEET – 2**

**Academic Year** : 2021-2022

Semester : II

Name of the Program : B.Tech Year: IV Year Section: A

Course/Subject : Pavement Design Course Code: GR18A4067

Name of the Faculty : G.Swetha

Designation: Assistant Professor

Dept.: Civil Engineering

This Assignment corresponds to Unit No. 2

Q1. What are the desirable properties of subgrade soil

Q2. What are the desirable properties of bituminous mixes? What are the steps in bituminous mix design? Discuss briefly

Q3. The specific gravity of weight proportions of aggregate and bitumen are as under for the preparation of Marshall mix design. The volume and weight of one marshall specimen was found to be 475cc and 1100gms. Assuming absorption of bitumen in aggregate is zero, find  $V_v$ ,  $V_b$ , VMA & VFB

|            | A1   | A2   | A3   | A4   | В    |
|------------|------|------|------|------|------|
| Weight(gm) | 825  | 200  | 325  | 150  | 100  |
| S.G        | 2.63 | 2.51 | 2.46 | 2.43 | 1.05 |

Objective Nos.: 1,3,4

Outcome Nos.: 1,5

Signature of HOD

Signature of faculty

Date:

Date:

87



## **Department of Civil Engineering**

## **ASSIGNMENT SHEET – 3**

| Academic Year               | : 2021-2022   |       |             |                          |
|-----------------------------|---------------|-------|-------------|--------------------------|
| Semester                    | : II          |       |             |                          |
| Name of the Program         | n : B.Tech    | Year: | IV Year     | Section: A               |
| Course/Subject              | : Pavement De | esign | Course Code | : GR18A4067              |
| Name of the Faculty         | : G.Swetha    |       |             |                          |
| <b>Designation:</b> Assista | nt Professor  |       |             | Dept.: Civil Engineering |

This Assignment corresponds to Unit No. 3

Q1. A semi-infinite soil mass is subjected to a stress under a circular plate having 15cm radius. The load intensity over the plate is 4000kg. Calculate the vertical stress in the soil under the axis of the circular plate at 2m depth.

Q2. Calculate intensity of vertical pressure due to point load of 4200Kg at a depth of 4m from the surface and a distance of 2m from the axis of loading.

Q3. Calculate the rebound surface deflection on a single layer pavement under a wheel load of 80kN with a tyre pressure of 0.7MPa. The effective elastic modulus of subgrade may be taken as 30MPa and poisson's ratio of soil as 0.4.

Objective Nos.: 1,2,3

Outcome Nos.: 1,3,5

Signature of HOD

Signature of faculty

### **Department of Civil Engineering**

#### **ASSIGNMENT SHEET – 4**

**Academic Year** : 2021-2022

Semester : II

Name of the Program : B.TechYear: IV YearSection: A

Course/Subject: Pavement DesignCourse Code: GR18A4067

Name of the Faculty : G.Swetha

Designation: Assistant Professor

**Dept.:** Civil Engineering

This Assignment corresponds to Unit No. 4

Q1. Design the pavement slab thickness by IRC method, using following data. Modulus of subgrade reaction=8kg/cm<sup>3</sup>, Present traffic intensity=1000cvpd, Design wheel load(P)=5100kg, Radius of contact area=15cm.

Q2. What is stress ratio factor? Explain about it

Q3. Design the CC pavement thickness, expansion and contraction joint spacing, dowel & tie bars for a wheel load of 5100kg. Assume all data suitably

Objective Nos.: 1,2,3

Outcome Nos.: 1,3,5

Signature of HOD

Date:

Signature of faculty

Date

### **Department of Civil Engineering**

#### **ASSIGNMENT SHEET – 5**

**Academic Year** : 2021-2022

Semester : II

Name of the Program : B.Tech Year: IV Year Section: A

Course/Subject : Pavement Design Course Code: GR18A4067

Name of the Faculty : G.Swetha

**Designation:** Assistant Professor

This Assignment corresponds to Unit No. 5

1. Discuss about joints and joint failures in rigid pavements?

2. Elaborate the Design of Overlay by Benkelman Beam method.

Objective Nos.: 1,2,3

Outcome Nos.: 1,3,5

Signature of HOD

Date:

Signature of faculty

Date

**Dept.:** Civil Engineering

#### GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY(AUTONOMOUS)

#### DEPARTMENT OF CIVIL ENGINEERING

IV B.Tech. II Semester Mid - I Examinations

#### PAVEMENT DESIGN (PROFESSIONAL ELECTIVE VI)

| Subject Code: GR18A4067 |            | Date: 08/02/2022 <u>Duration: 75 Min</u> |
|-------------------------|------------|------------------------------------------|
|                         | SUBJECTIVE | Max Marks: 15M                           |

#### (Answer Any Three Questions)

(3 X 5 = 15 Marks)

| Question |                                                           | Blooms  | Course    |
|----------|-----------------------------------------------------------|---------|-----------|
| No.      |                                                           | Levels* | Outcome   |
| 1        | a) What are the types of pavements?                       | BL1 &   | CO1       |
|          | b) explain the functions of each component layers of      | BL2     |           |
|          | flexible pavement with neat sketch ?                      |         |           |
| 2        | Write any two test in aggregate.                          | BL3 &   | CO2       |
|          |                                                           | BL4     |           |
| 3        | a) what any three assumptions of Boussinesq theory.       | BL5 &   | CO3       |
|          | <b>b)</b> Explain concept of One layer system- Boussinesq | BL6     |           |
|          | theory?                                                   |         |           |
| 4        | a) what is wheel load?                                    | BL2 &   | CO1 & CO2 |
|          | b) Explain about Marshall method of mix design.           | BL3     |           |

#### **PAVEMENT DESIGN (PROFESSIONAL ELECTIVE VI)**

| Subject Code: GR18A4067                                                          |                          | Date: 08/02/2022          |                |  |
|----------------------------------------------------------------------------------|--------------------------|---------------------------|----------------|--|
| Duration: 15 Min                                                                 | OBJECTIVE                | Max Marks: 5M             |                |  |
| Name:<br>1. Which of the below IS                                                | Roll No:                 |                           | codes gives th |  |
| recommended practice for<br>a) IRC 36 b) IRC 27 c) IRC 2 d                       | -                        | de for road works?        | C C            |  |
| <ol> <li>Clay soils are the best to pr<br/>a) True b) False</li> </ol>           | epare subgrade.          |                           |                |  |
| <ol> <li>Which type of compaction r<br/>a) Sheep foot roller b) Vibra</li> </ol> |                          | •                         | led roller     |  |
| <ol> <li>The test can be con<br/>a) CBR b) Unconfined comp</li> </ol>            |                          |                           |                |  |
| . In a rigid pavement, what ty<br>) Very heavy b) Light c) Mode                  |                          | lry lean concrete as a ba | ase course?    |  |
| .Toughness is defined as the r<br>) Deformation b) Impact c) Ab                  |                          |                           |                |  |
| . Which type of bitumen has a<br>) Bitumen emulsion b) Modifi                    |                          |                           |                |  |
| . Bitumen having a higher sof<br>) True b) False                                 | tening point is preferre | ed in hot climates.       |                |  |
| Burmistor's method of never                                                      |                          | f method.                 |                |  |
| . Burmister's method of paver<br>) Empirical b) Analytical c) Sen                | • •                      |                           |                |  |

#### GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY(AUTONOMOUS)

#### DEPARTMENT OF CIVIL ENGINEERING

IV B.Tech. II Semester Mid - II Examinations

#### **PAVEMENT DESIGN (PROFESSIONAL ELECTIVE VI)**

| Subject Code: GR18A4067 |            | Date: 06/05/2022 Duration: 90 Min |  |
|-------------------------|------------|-----------------------------------|--|
|                         | SUBJECTIVE | Max Marks: 15M                    |  |

#### (Answer Any Three Questions)

(3 X 5 = 15 Marks)

| Question |                                                                                                                                                                                                                                               | Blooms  | Course  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| No.      |                                                                                                                                                                                                                                               | Levels* | Outcome |
| 1        | Illustrate about Rigid Pavement Design concepts using as per IRC.                                                                                                                                                                             | BL2     | CO3     |
| 2        | Calculate the rebound surface deflection on a single<br>layer pavement under a wheel load of 40kN with a tyre<br>pressure of 0.8MPa. The effective elastic modulus of<br>subgrade may be taken as 40MPa and poison's ratio of<br>soil as 0.5. | BL3     | CO4     |
| 3        | Discuss about joints and joint failures in rigid pavements?                                                                                                                                                                                   | BL5     | CO5     |
| 4        | Elaborate the Design of Overlay by Benkelman Beam method.                                                                                                                                                                                     | BL5     | CO5     |

#### **PAVEMENT DESIGN (PROFESSIONAL ELECTIVE VI)**

| Subject Code: GR18A                                          | 4067                                                                 | Date: 06/05/2022                                                        |
|--------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------|
| Duration: 10 Min                                             | OBJECTIVE                                                            | Max Marks: 5M                                                           |
| Name:                                                        | Roll No:                                                             |                                                                         |
| 1. The filler materia<br>a) True                             | l must be inelastic in nature.<br>b) False                           | ( )                                                                     |
| ( )                                                          | -                                                                    | oints in a reinforced cement concrete slab is                           |
| -                                                            | pacing between contraction jo<br>s up all the compressive force      | pints in an RCC slab, it is assumed that the in the slab. ( )           |
|                                                              | • • • •                                                              | ed in the contraction joints?()<br>c) Bitumen filler d) Concrete strips |
| •                                                            | ction are the expansion joints<br>ngitudinal c) With traffic d) Op   |                                                                         |
|                                                              | e works required on the rigid p<br>) Steel reinforcement c) Joint    | pavement is mainly in the(  )<br>s d) Slab surface                      |
| -                                                            | ure stress is generally ignored<br>b) Interior stress c) Edge stress |                                                                         |
| 8. The ultraviolet ra<br>a) Brittle b) Smooth                | ys from the sun make the pav<br>c) Soft d) Rough                     | rement ( )                                                              |
|                                                              | n reason for the swelling of th<br>gging c) Sunlight d) Chemicals    |                                                                         |
| 10. The test started<br>measurement.<br>a) 3 m b) 2.7 m c) 3 |                                                                      | ed after for intermediate deflection<br>( )                             |

# **Department of Civil Engineering**

# MID – I MARKS

# SECTION- A,B

| S.No | Reg No     | Student Name                 | Objective<br>Marks (5) | Subjective<br>Marks (15) | Total Marks (20) |
|------|------------|------------------------------|------------------------|--------------------------|------------------|
|      |            |                              |                        |                          |                  |
| 1    | 17241A0153 | SUJITH KUMAR SHINDE          | 3                      | 3                        | 3                |
| 2    | 17241A0157 | VUPPULA MITHUNKUMAR<br>Reddy | 3.5                    | 3                        | 4                |
| 3    | 18241A0101 | AJMEERA GANESH               | AB                     | AB                       | AB               |
| 4    | 18241A0102 | ANABOTULA SRAVANI            | 2                      | 8                        | 2                |
| 5    | 18241A0103 | ANUMATLA MANOJ               | 3                      | 11                       | 3                |
| 6    | 18241A0104 | BYNA RISHITHA                | 2.5                    | 4                        | 3                |
| 7    | 18241A0105 | BURA THARASRI                | 2.5                    | 6                        | 3                |
| 8    | 18241A0106 | PUDARI BADRINATH GOUD        | 3                      | 1                        | 3                |
| 9    | 18241A0107 | BALASANI ROHITH              | 2                      | AB                       | 2                |
| 10   | 18241A0108 | BANDARI VEERASWAMY           | 2.5                    | 10                       | 3                |
| 11   | 18241A0109 | BANDI VARUN KUMAR            | 3                      | 1                        | 3                |
| 12   | 18241A0110 | BASHIPAKA PRADEEP            | 2                      | 4                        | 2                |
| 13   | 18241A0111 | BATHULA NIKHIL               | 2.5                    | 6                        | 3                |
| 14   | 18241A0112 | BATIKIRI VEERENDRA<br>SWAMY  | 2.5                    | 8                        | 3                |
| 15   | 18241A0113 | BHUKYA SOUJANYA              | 3                      | 4                        | 3                |
| 16   | 18241A0114 | BHUKYA VARUN NAIK            | 3                      | 11                       | 3                |
| 17   | 18241A0115 | BODDU PAVAN                  | 1.5                    | 9                        | 2                |
| 18   | 18241A0116 | BYAGARI RANGARAJU            | 2.5                    | 5                        | 3                |
| 19   | 18241A0117 | CHADA RUCHITA                | 3                      | 10                       | 3                |
| 20   | 18241A0118 | CHINTHAKUNTLA<br>THRIVEEN    | 1                      | 4                        | 1                |
| 21   | 18241A0119 | CV JASWANTH SURYA            | 1                      | 3                        | 1                |
| 22   | 18241A0120 | DOSAPATI NISHU               | 3.5                    | 12                       | 4                |

| 23 | 18241A0121 | G PRASHANTH                    | 1.5 | 6  | 2  |
|----|------------|--------------------------------|-----|----|----|
| 24 | 18241A0122 | GADDIPATI LOHITHA              | 2.5 | 8  | 3  |
| 25 | 18241A0123 | GANGAM ROHIT REDDY             | 2   | 1  | 2  |
| 26 | 18241A0124 | GOTTEMUKKALA<br>GOVARDHAN      | 4   | 2  | 4  |
| 27 | 18241A0125 | HRISHIKESH BANSAL              | 1   | 4  | 1  |
| 28 | 18241A0126 | JANAPATI RAJU                  | 2.5 | 9  | 3  |
| 29 | 18241A0127 | JYOTHIKA MANNAVA               | 2.5 | 12 | 3  |
| 30 | 18241A0128 | K HARSHITHA REDDY              | 4   | 8  | 4  |
| 31 | 18241A0129 | KOLAN RESHIKESH REDDY          | 3.5 | 2  | 4  |
| 32 | 18241A0130 | KARRI BHARATH<br>CHANDRA REDDY | 4.5 | 4  | 5  |
| 33 | 18241A0131 | KUPPALA NIHAR                  | 3   | 7  | 3  |
| 34 | 18241A0132 | KURVA LAVANYA                  | 3   | 5  | 3  |
| 35 | 18241A0133 | MADDIMSETTY SRI<br>CHARAN      | 2   | 3  | 2  |
| 36 | 18241A0134 | MAGANOOR MANASWINI             | 3.5 | 13 | 4  |
| 37 | 18241A0135 | MALOTH BHAVSINGH               | 3   | 6  | 3  |
| 38 | 18241A0136 | MALOTHU NAVEENA                | 3   | 15 | 3  |
| 39 | 18241A0137 | MANDA ITHIHAS                  | 2   | 7  | 2  |
| 40 | 18241A0138 | MOHAMMAD ASHFAQ<br>AHMED       | 3   | 7  | 3  |
| 41 | 18241A0139 | MOHAMMED OMER<br>SHAREEF       | 3   | 12 | 3  |
| 42 | 18241A0140 | MUKUNDU NAVEEN                 | AB  | AB | AB |
| 43 | 18241A0141 | NALUMASU SAHITHI               | 1.5 | 6  | 2  |
| 44 | 18241A0142 | NAMPELLY RAVI KUMAR            | 2.5 | 8  | 3  |
| 45 | 18241A0143 | NARRA SHASHIDHAR<br>REDDY      | 3   | 14 | 3  |
| 46 | 18241A0144 | PATLOLA VINAY REDDY            | 2   | 2  | 2  |
| 47 | 18241A0145 | Pattambetty Pavan Kumar        | 1.5 | 2  | 2  |
| 48 | 18241A0146 | POLA THARUN                    | 3   | 5  | 3  |
| 49 | 18241A0147 | POSANI S V A KALYAN            | 2   | 6  | 2  |
| 50 | 18241A0148 | pulle manichandra              | 3   | 6  | 3  |
| 51 | 18241A0149 | RAJULAPATI ROHIT NAGA<br>SAI   | 3.5 | 15 | 4  |
| 52 | 18241A0150 | S Subbaram Reddy               | 3.5 | 2  | 4  |
| 53 | 18241A0153 | SUNKARI VIKAS                  | 3.5 | 7  | 4  |

| 54 | 18241A0154 | THIRUPATHI RAO SALLA              | 3   | 15 | 3 |
|----|------------|-----------------------------------|-----|----|---|
| 55 | 18241A0155 | Trivikram reddy                   | 0.5 | 2  | 1 |
| 56 | 18241A0156 | Trupthi shreya                    | 2.5 | 3  | 3 |
| 57 | 18241A0157 | Vakamalla Bhavya sree             | 3   | 14 | 3 |
| 58 | 18241A0158 | Vemula Manisha                    | 1.5 | 8  | 2 |
| 59 | 18241A0159 | VUPPULA KEERTHANA                 | 2.5 | 10 | 3 |
| 60 | 18241A0160 | YALLA ANITHA                      | 3   | 6  | 3 |
| 61 | 17241A0160 | Abdul Samad                       | 1.5 | 2  | 2 |
| 62 | 18241A0161 | A NACHIKETH                       | 1.5 | 4  | 1 |
| 63 | 18241A0162 | ALETI JAGADISH                    | 4   | 2  | 4 |
| 64 | 18241A0162 | AMIRNENI ANUSHA                   | 3   | 14 | 3 |
| 65 | 18241A0103 | ANIREDDY AVINASH                  | 2   | 14 | 2 |
| 66 |            | ASHITHA GOLLA                     |     |    |   |
|    | 18241A0165 |                                   | 2.5 | 5  | 3 |
| 67 | 18241A0166 | ANIMESH BAATHUK                   | 1   | 2  | 1 |
| 68 | 18241A0167 | BOPPU LOKESH                      | 2   | 6  | 2 |
| 69 | 18241A0168 | BUDAGAM HARSHITH                  | 1.5 | 2  | 2 |
| 70 | 18241A0169 | CHILUMULA SRIDHAR                 | 1.5 | 4  | 2 |
| 71 | 18241A0170 | DANDRE VENNELA                    | 1.5 | 10 | 2 |
| 72 | 18241A0171 | DOTI UPENDER                      | 2.5 | 6  | 3 |
| 73 | 18241A0172 | EDA MANASA                        | 2.5 | 10 | 3 |
| 74 | 18241A0173 | GONDA HARSHINI                    | 2   | 13 | 2 |
| 75 | 18241A0174 | GORE KAMALAKAR SAILESH            | 1   | 5  | 1 |
| 76 | 18241A0175 | GORE KAMALAKAR SANDEEP            | 0.5 | 4  | 1 |
| 77 | 18241A0176 | GUDDATI ARUN                      | 1.5 | 3  | 2 |
| 78 | 18241A0177 | VIJAY NARASIMHA REDDY<br>KOLAGTLA | 1.5 | 4  | 2 |
| 79 | 18241A0178 | KANCHARAKUNTLA DEEPIKA            | 1.5 | 8  | 2 |
| 80 | 18241A0179 | KOTA RASHMITHA                    | 1   | 1  | 1 |
| 81 | 18241A0180 | <b>KOTHURI PRANAY</b>             | 3   | 9  | 3 |
| 82 | 18241A0181 | KUDALA RAMA                       | 1.5 | 9  | 2 |
| 83 | 18241A0182 | KUMMARI SRILEKHA                  | 3   | 15 | 3 |
| 84 | 18241A0183 | KUNCHALA ADARSH                   | 1   | 2  | 1 |
| 85 | 18241A0184 | K.Neeraj Prasad                   | 1.5 | 8  | 2 |
| 86 | 18241A0185 | KYAMA PAVAN                       | 3   | 4  | 3 |
| 87 | 18241A0186 | M SHEKHAR                         | 2   | 7  | 2 |
| 88 | 18241A0187 | MALRAJ MANVITHA                   | 4   | 15 | 4 |
| 89 | 18241A0188 | MATHARASI SAI KUMAR               | 1.5 | 3  | 2 |
| 90 | 18241A0189 | MD AMEER SOHAIL                   | 3   | 7  | 3 |
| 91 | 18241A0190 | MD AMIR                           | 3   | 7  | 3 |
| 92 | 18241A0191 | MEDARI VIKRAM ADITHYA             | 1.5 | 3  | 2 |

| 93  | 18241A0192     | MEDIGA KARTHIK              | 2.5 | 7  | 3 |
|-----|----------------|-----------------------------|-----|----|---|
| 94  | 18241A0193     | SUNKARA MONIESH REDDY       | 3.5 | 2  | 4 |
| 95  | 18241A0194     | KAUSHIK NADELLA             | 2.5 | 4  | 3 |
| 96  | 18241A0195     | NIKHITHA KASUVOJULA         | 1.5 | 14 | 2 |
| 97  | 18241A0196     | NUNAVATH SUMAN              | 2   | 4  | 2 |
| 98  | 18241A0197     | POTHULAPALLY KISHOR         | 1.5 | 1  | 2 |
| 99  | 18241A0198     | P.Spandana Reddy            | 2   | 5  | 2 |
| 100 | 18241A0199     | PRATHYUSHA MADDALA          | 2.5 | 14 | 3 |
| 101 | 18241A01A<br>0 | PRATYUSH BAVANARI           | 3   | 8  | 3 |
| 102 | 18241A01A<br>1 | PUTTA ROHIT                 | 1   | 1  | 1 |
| 103 | 18241A01A<br>2 | RAHUL PRADHAN               | 3.5 | 4  | 4 |
| 104 | 18241A01A<br>3 | RAMPELLI PRAVALIKA          | 2.5 | 7  | 3 |
| 105 | 18241A01A<br>4 | RANGU SONIYA                | 3   | 11 | 3 |
| 106 | 18241A01A<br>5 | RENTALA ADARSH REDDY        | 1.5 | 8  | 2 |
| 107 | 18241A01A<br>6 | RITISH J                    | 3   | 8  | 3 |
| 108 | 18241A01A<br>7 | SEELAM RAHUL GOUD           | 3   | 3  | 3 |
| 109 | 18241A01A<br>8 | SHAIK AFEEZ                 | 1.5 | 6  | 2 |
| 110 | 18241A01A<br>9 | SHAIK SHOAIB                | 3   | 7  | 3 |
| 111 | 18241A01B<br>0 | SHIVARATHRI SAI KUMAR       | 1.5 | 4  | 2 |
| 112 | 18241A01B<br>1 | SHIVARATHRI THARUN          | 3   | 2  | 3 |
| 113 | 18241A01B<br>2 | SOWMIKA BOYAPATI            | 2.5 | 7  | 3 |
| 114 | 18241A01B<br>3 | VISHRUTH REDDY T N          | 1.5 | 8  | 2 |
| 115 | 18241A01B<br>4 | TEKULA PRASHANTH REDDY      | 3   | 8  | 3 |
| 116 | 18241A01B<br>5 | TEEGALA SOMESHWAR<br>REDDY  | 3   | 11 | 3 |
| 117 | 18241A01B<br>6 | THATIPAMULA VIGNA SAI       | 3   | 5  | 3 |
| 118 | 18241A01B<br>7 | THOTA SRI SAI               | 1.5 | 7  | 2 |
| 119 | 18241A01B<br>8 | VEDATI MANIKANTA<br>KARTHIK | 3   | 9  | 3 |

| 120 | 18241A01B<br>9 | VALLAPU REDDY<br>SUSHRUTHA | 2.5 | 7  | 3 |
|-----|----------------|----------------------------|-----|----|---|
| 121 | 18241A01C<br>0 | YANALA RITHISH REDDY       | 2.5 | 6  | 3 |
| 122 | 19245A0101     | Kancherla Bharath          | 3   | 8  | 3 |
| 123 | 19245A0102     | ELUPULA KUMARASWAMY        | 2   | 10 | 2 |
| 124 | 19245A0103     | Brahmadevara bhavitha      | 2.5 | 15 | 3 |
| 125 | 19245A0104     | Dasari namratha            | 2.5 | 9  | 3 |
| 126 | 19245A0105     | T chandana                 | 4   | 9  | 4 |
| 127 | 19245A0106     | Kola.Haritha               | 2.5 | 14 | 3 |
| 128 | 19245A0107     | CHOUGONI SHIVA<br>SHANKAR  | 4   | 8  | 4 |
| 129 | 19245A0108     | KOTA ANVESH                | 3   | 5  | 3 |
| 130 | 19245A0109     | polagani Chandu goud       | 3   | 8  | 3 |
| 131 | 19245A0110     | SADGARI KARTHIK            | 3   | 4  | 3 |
| 132 | 19245A0111     | GUGULOTHU PAVAN            | 2.5 | 6  | 3 |
| 133 | 19245A0112     | A RAGHAVENDRA              | 2.5 | 4  | 3 |

# **Department of Civil Engineering**

### MID – II MARKS

# SECTION-A, B

| S.No | Reg No     | Student Name                 | Objective<br>Marks (5) | Subjective<br>Marks (15) | Total Marks<br>(20) |
|------|------------|------------------------------|------------------------|--------------------------|---------------------|
|      |            |                              |                        |                          |                     |
| 1    | 17241A0153 | SUJITH KUMAR SHINDE          | 2                      | 4                        | 6                   |
| 2    | 17241A0157 | VUPPULA MITHUNKUMAR<br>Reddy | 2.5                    | 9                        | 12                  |
| 3    | 18241A0101 | AJMEERA GANESH               | AB                     | AB                       | AB                  |
| 4    | 18241A0102 | ANABOTULA SRAVANI            | 1.5                    | 4                        | 6                   |
| 5    | 18241A0103 | ANUMATLA MANOJ               | 1.5                    | 12                       | 14                  |
| 6    | 18241A0104 | BYNA RISHITHA                | 2                      | 8                        | 10                  |
| 7    | 18241A0105 | BURA THARASRI                | 2.5                    | 14                       | 17                  |
| 8    | 18241A0106 | PUDARI BADRINATH GOUD        | AB                     | AB                       | AB                  |
| 9    | 18241A0107 | BALASANI ROHITH              | 3                      | 5                        | 8                   |
| 10   | 18241A0108 | BANDARI VEERASWAMY           | 1.5                    | 7                        | 9                   |
| 11   | 18241A0109 | BANDI VARUN KUMAR            | 2                      | 2                        | 4                   |
| 12   | 18241A0110 | BASHIPAKA PRADEEP            | 2                      | 8                        | 10                  |
| 13   | 18241A0111 | BATHULA NIKHIL               | 2.5                    | 3                        | 6                   |
| 14   | 18241A0112 | BATIKIRI VEERENDRA<br>SWAMY  | 2                      | 10                       | 12                  |
| 15   | 18241A0113 | BHUKYA SOUJANYA              | 1.5                    | 12                       | 14                  |
| 16   | 18241A0114 | BHUKYA VARUN NAIK            | 1.5                    | 7                        | 9                   |
| 17   | 18241A0115 | BODDU PAVAN                  | 1.5                    | 10                       | 12                  |
| 18   | 18241A0116 | BYAGARI RANGARAJU            | 1.5                    | 6                        | 8                   |
| 19   | 18241A0117 | CHADA RUCHITA                | 1                      | 7                        | 8                   |
| 20   | 18241A0118 | CHINTHAKUNTLA THRIVEEN       | 1                      | 5                        | 6                   |
| 21   | 18241A0119 | CV JASWANTH SURYA            | 1                      | 2                        | 3                   |
| 22   | 18241A0120 | DOSAPATI NISHU               | 1                      | 14                       | 15                  |

| 23 | 18241A0121 | G PRASHANTH                    | 0.5 | 4  | 5  |
|----|------------|--------------------------------|-----|----|----|
| 24 | 18241A0122 | GADDIPATI LOHITHA              | 2.5 | 12 | 15 |
| 25 | 18241A0123 | GANGAM ROHIT REDDY             | 1   | 2  | 3  |
| 26 | 18241A0124 | GOTTEMUKKALA<br>GOVARDHAN      | 2.5 | 6  | 9  |
| 27 | 18241A0125 | HRISHIKESH BANSAL              | 1.5 | 7  | 9  |
| 28 | 18241A0126 | JANAPATI RAJU                  | 2.5 | 12 | 15 |
| 29 | 18241A0127 | JYOTHIKA MANNAVA               | 2.5 | 15 | 18 |
| 30 | 18241A0128 | K HARSHITHA REDDY              | 2.5 | 11 | 14 |
| 31 | 18241A0129 | KOLAN RESHIKESH REDDY          | 1.5 | 2  | 4  |
| 32 | 18241A0130 | KARRI BHARATH CHANDRA<br>REDDY | 3   | 4  | 7  |
| 33 | 18241A0131 | KUPPALA NIHAR                  | 2.5 | 8  | 11 |
| 34 | 18241A0132 | KURVA LAVANYA                  | 1   | 7  | 8  |
| 35 | 18241A0133 | MADDIMSETTY SRI CHARAN         | 2   | 6  | 8  |
| 36 | 18241A0134 | MAGANOOR MANASWINI             | 2   | 14 | 16 |
| 37 | 18241A0135 | MALOTH BHAVSINGH               | 2   | 6  | 8  |
| 38 | 18241A0136 | MALOTHU NAVEENA                | 2.5 | 13 | 16 |
| 39 | 18241A0137 | MANDA ITHIHAS                  | 0.5 | 7  | 8  |
| 40 | 18241A0138 | MOHAMMAD ASHFAQ AHMED          | 1.5 | 6  | 8  |
| 41 | 18241A0139 | MOHAMMED OMER SHAREEF          | 1   | 14 | 15 |
| 42 | 18241A0140 | MUKUNDU NAVEEN                 | AB  | AB | AB |
| 43 | 18241A0141 | NALUMASU SAHITHI               | 2   | 10 | 12 |
| 44 | 18241A0142 | NAMPELLY RAVI KUMAR            | 2   | 13 | 15 |
| 45 | 18241A0143 | NARRA SHASHIDHAR REDDY         | 2.5 | 7  | 10 |
| 46 | 18241A0144 | PATLOLA VINAY REDDY            | 2   | 1  | 3  |
| 47 | 18241A0145 | Pattambetty Pavan Kumar        | 2   | 5  | 7  |
| 48 | 18241A0146 | POLA THARUN                    | 1   | 7  | 8  |
| 49 | 18241A0147 | POSANI S V A KALYAN            | 2.5 | 10 | 13 |
| 50 | 18241A0148 | pulle manichandra              | 2.5 | 5  | 8  |
| 51 | 18241A0149 | RAJULAPATI ROHIT NAGA SAI      | 2.5 | 15 | 18 |
| 52 | 18241A0150 | S Subbaram Reddy               | 2.5 | 1  | 4  |
| 53 | 18241A0153 | SUNKARI VIKAS                  | 2   | 13 | 15 |
| 54 | 18241A0154 | THIRUPATHI RAO SALLA           | 1.5 | 10 | 12 |
| 55 | 18241A0155 | Trivikram reddy                | 1.5 | 4  | 6  |

| 56 | 18241A0156 | Trupthi shreya                    | 2.5 | 7  | 10 |
|----|------------|-----------------------------------|-----|----|----|
| 57 | 18241A0157 | Vakamalla Bhavya sree             | 2   | 9  | 11 |
| 58 | 18241A0158 | Vemula Manisha                    | 2.5 | 10 | 13 |
| 59 | 18241A0159 | VUPPULA KEERTHANA                 | 3   | 10 | 13 |
| 60 | 18241A0160 | YALLA ANITHA                      | 0.5 | 6  | 7  |
| 61 | 17241A0161 | Abdul Samad                       | 0.5 | 2  | 3  |
| 62 | 18241A0161 | A NACHIKETH                       | 1.5 | 6  | 8  |
| 63 | 18241A0162 | ALETI JAGADISH                    | 0.5 | 7  | 8  |
| 64 | 18241A0163 | AMIRNENI ANUSHA                   | 1.5 | 14 | 16 |
| 65 | 18241A0164 | ANIREDDY AVINASH                  | 2   | 8  | 10 |
| 66 | 18241A0165 | ASHITHA GOLLA                     | 1.5 | 9  | 11 |
| 67 | 18241A0166 | ANIMESH BAATHUK                   | 1.5 | 3  | 5  |
| 68 | 18241A0167 | BOPPU LOKESH                      | 2.5 | 5  | 8  |
| 69 | 18241A0168 | BUDAGAM HARSHITH                  | 0.5 | 5  | 6  |
| 70 | 18241A0169 | CHILUMULA SRIDHAR                 | 2   | 9  | 11 |
| 71 | 18241A0170 | DANDRE VENNELA                    | 1.5 | 11 | 13 |
| 72 | 18241A0171 | DOTI UPENDER                      | 2.5 | 6  | 9  |
| 73 | 18241A0172 | EDA MANASA                        | 2   | 8  | 10 |
| 74 | 18241A0173 | GONDA HARSHINI                    | 3   | 8  | 11 |
| 75 | 18241A0174 | GORE KAMALAKAR SAILESH            | 0.5 | 5  | 6  |
| 76 | 18241A0175 | GORE KAMALAKAR SANDEEP            | 1.5 | 4  | 6  |
| 77 | 18241A0176 | GUDDATI ARUN                      | 1   | 4  | 5  |
| 78 | 18241A0177 | VIJAY NARASIMHA REDDY<br>KOLAGTLA | 0.5 | 8  | 9  |
| 79 | 18241A0178 | KANCHARAKUNTLA DEEPIKA            | 0.5 | 12 | 13 |
| 80 | 18241A0179 | KOTA RASHMITHA                    | 0.5 | 3  | 4  |
| 81 | 18241A0180 | KOTHURI PRANAY                    | 1   | 7  | 8  |
| 82 | 18241A0181 | KUDALA RAMA                       | 2   | 5  | 7  |
| 83 | 18241A0182 | KUMMARI SRILEKHA                  | 1   | 13 | 14 |
| 84 | 18241A0183 | KUNCHALA ADARSH                   | 2   | 2  | 4  |
| 85 | 18241A0184 | K.Neeraj Prasad                   | 0.5 | 2  | 3  |
| 86 | 18241A0185 | KYAMA PAVAN                       | 0.5 | 2  | 3  |
| 87 | 18241A0186 | M SHEKHAR                         | 1   | 4  | 5  |
| 88 | 18241A0187 | MALRAJ MANVITHA                   | 0.5 | 15 | 16 |
| 89 | 18241A0188 | MATHARASI SAI KUMAR               | 1   | 2  | 3  |
| 90 | 18241A0189 | MD AMEER SOHAIL                   | 0.5 | 12 | 13 |
| 91 | 18241A0190 | MD AMIR                           | 1.5 | 9  | 11 |
| 92 | 18241A0191 | MEDARI VIKRAM ADITHYA             | 1.5 | 4  | 6  |
| 93 | 18241A0192 | MEDIGA KARTHIK                    | 1   | 5  | 6  |
| 94 | 18241A0193 | SUNKARA MONIESH REDDY             | 0.5 | 2  | 3  |
| 95 | 18241A0194 | KAUSHIK NADELLA                   | 2   | 3  | 5  |

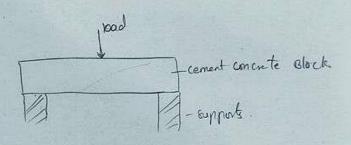
| 96  | 18241A0195 | NIKHITHA KASUVOJULA      | 2.5 | 11 | 14 |
|-----|------------|--------------------------|-----|----|----|
| 97  | 18241A0196 | NUNAVATH SUMAN           | 1.5 | 9  | 11 |
| 98  | 18241A0197 | POTHULAPALLY KISHOR      | 1   | 2  | 3  |
| 99  | 18241A0198 | P.Spandana Reddy         | 3   | 5  | 8  |
| 100 | 18241A0199 | PRATHYUSHA MADDALA       | 2   | 7  | 9  |
| 101 | 18241A01A0 | PRATYUSH BAVANARI        | 1.5 | 6  | 8  |
| 102 | 18241A01A1 | PUTTA ROHIT              | 2   | 5  | 7  |
| 103 | 18241A01A2 | RAHUL PRADHAN            | 2.5 | 6  | 9  |
| 104 | 18241A01A3 | RAMPELLI PRAVALIKA       | 1.5 | 11 | 13 |
| 105 | 18241A01A4 | RANGU SONIYA             | 2   | 11 | 13 |
| 106 | 18241A01A5 | RENTALA ADARSH REDDY     | 2.5 | 12 | 15 |
| 107 | 18241A01A6 | RITISH J                 | 0.5 | 5  | 6  |
| 108 | 18241A01A7 | SEELAM RAHUL GOUD        | 0.5 | 4  | 5  |
| 109 | 18241A01A8 | SHAIK AFEEZ              | 0.5 | 6  | 7  |
| 110 | 18241A01A9 | SHAIK SHOAIB             | 0.5 | 8  | 9  |
| 111 | 18241A01B0 | SHIVARATHRI SAI KUMAR    | 0.5 | 3  | 4  |
| 112 | 18241A01B1 | SHIVARATHRI THARUN       | 2   | 1  | 3  |
| 113 | 18241A01B2 | SOWMIKA BOYAPATI         | 0.5 | 10 | 11 |
| 114 | 18241A01B3 | VISHRUTH REDDY T N       | 1.5 | 7  | 9  |
| 115 | 18241A01B4 | TEKULA PRASHANTH REDDY   | 0.5 | 11 | 12 |
| 116 | 18241A01B5 | TEEGALA SOMESHWAR REDDY  | 1   | 5  | 6  |
| 117 | 18241A01B6 | THATIPAMULA VIGNA SAI    | 1.5 | 3  | 5  |
| 118 | 18241A01B7 | THOTA SRI SAI            | 1   | 11 | 12 |
| 119 | 18241A01B8 | VEDATI MANIKANTA KARTHIK | 2.5 | 12 | 15 |
| 120 | 18241A01B9 | VALLAPU REDDY SUSHRUTHA  | 1   | 10 | 11 |
| 121 | 18241A01C0 | YANALA RITHISH REDDY     | 1   | 7  | 8  |
| 122 | 19245A0101 | Kancherla Bharath        | 1.5 | 14 | 16 |
| 123 | 19245A0102 | ELUPULA KUMARASWAMY      | 1.5 | 8  | 10 |
| 124 | 19245A0103 | Brahmadevara bhavitha    | 1   | 15 | 16 |
| 125 | 19245A0104 | Dasari namratha          | 2   | 13 | 15 |
| 126 | 19245A0105 | T chandana               | 0.5 | 14 | 15 |
| 127 | 19245A0106 | Kola.Haritha             | 1.5 | 13 | 15 |
| 128 | 19245A0107 | CHOUGONI SHIVA SHANKAR   | 1.5 | 7  | 9  |
| 129 | 19245A0108 | KOTA ANVESH              | 3   | 5  | 8  |
| 130 | 19245A0109 | polagani Chandu goud     | 1   | 5  | 6  |
| 131 | 19245A0110 | SADGARI KARTHIK          | 1.5 | 7  | 9  |
| 132 | 19245A0111 | GUGULOTHU PAVAN          | 2   | 8  | 10 |
| 133 | 19245A0112 | A RAGHAVENDRA            | 3.5 | 7  | 11 |

Gokaraju Rangaraju Institute of Engineering & Technology (Autonomous College Affiliated to JNTUH) Bachupally, Kukatpally, Hyderabad - 500090 MID TERM EXAMINATION ř II A0125 H.T. No. 18241 No. Name of the Examination IV. Rtech - II Sem Mid - I Examinations 439543 Date 9 5 22 Course\_Bitech\_Branch\_Civil Signature of the Invigilator a b a b a b a b TOTAL Q.NO. Th MARKS START WRITING FROM HERE 4.) Illustoart about wheel loads. The pressue. Content phersure. Aus: - which loads: - which which applied an the powements. \* This are mostly taken into fours in stow omning vehicles, i.e during the time of traffic.

2) Any two test of Aggregated in provement Design :-Aggregate Quality test -+ It is very Important Treat as the Suality of the powement should be the best and should be known before the laiping down of parement Design. \* The materials are taken to lab to check the Quality. load Bearing Test:-\* It is the inger Test required for the personent Design. \* As one should the carpacity ten perement should hold, in heavy traffic. "In heavy traffic, the powemient should not Break down and cause problems.

\* wheel loads nere trigh, when the vehich is moving fast. \* wheel loads are nigh, when, the Vehicles nurning very slow in traffic. a reason for the \* which loads are powement failures. \* Trusk play a very signification role in affecting ten pavement Design. ) 1 swhal loads Pare ment Tiere Pressurere!-\* Time grussman is a manin instearing of loads on the gaye ments. \* less type pressure leads to more 1,00001 on ten parement. Since less typere pressure, reads to show

moving and more presence on the type \* Ryres get flats, and hence leads to higher load on the roads. \* plighter type preserve leade to less 1000 on paie ments, as ten vehich oan move ferst \* Threafore typen pressure is very Duportant in the pavement Design. Contract Pressure 1-Contact pressure is the pressure & which is obtained from the Vehiche on specific powement. \* It is very to calculate the contact pressure. × It is one of the Duportant phessions to be taken not of O, contant press


noving pud noer pressure on the type \* Ryres get flats, and hence leads to higher load on the roads. a flighter type pression leads to less look on paiements, as ten vehich an move ferest. \* Threefore typen pressure is very Duportant in the powernent Design. Contact Pressurer-Contact pressure is the pressure & which is obtained from the Vehiche on specific powement. \* It is very to calculate the contact pressure. × It is one of the Duportant pressures to be taken not of D) contact pres

Gokaraju Rangaraju Institute of Engineering & Technology (Autonomous College Affiliated to JNTUH) (12 Pages) Bachupally, Kukatpally, Hyderabad - 500090 MID TERM EXAMINATION 1 П No. H.T. No. 924 5 A 0 1 0 6 1 419163 Name of the Examination I-MID Examination parement delign Branch CR Legiocening Date \$103/22 Blech Course Signature of the Invigilator Q.NO. TOTAL b a b a b a b a b a b a MARKS START WRITING FROM HERE factors affecting the pavement dollars are as tollows. 14 ) Subgrade Strength The strength of the Subgrade of a parement plays an -> If the strength or load leasing capasity of the Subgrade is more the Important role. -> The subgrade bearing capacity, is which the parement design the parement has good strength. directly depunds, Based on the Soll bearing Capably the design 1 is estimated. > The load from the Surface & Analy transferred to Sul so It Schould be strong snough to the transfor the load langer area. a

The volume of the boffic also affects the design 3 - (2) Traffic -> Based on the defign the volume of hoffre should flow if , the traffic more more than the designed volume of the looffic., It reduces Its type I par, 6 -> Traffic 93 directly to oraintains a contact with the Surface course, so it should be skid resistance and wear-and tear of Sef- wheels should be loss (3 Weather or climatic Cordition. The Surface course of pavement is devection supposed to the climatic cordition. -) The Surface course must be designed in Such away that it should result all the elemetric corditions. -> The scale code, should be drawed away. (4) Surface Course Surface course mataines direct contact with Wheels of a vehicle. -> so the pavement design for Surface counce must be skid xeristance -> less wear and tear. of vehickalar wheel.

→ Regist parements are those parements which are constructed or laid wing cement concrete. → so connect the plate load test is done on cement concrete , becau block because & Strength of Rigid parements directly depends on the Alexand or tensile strength of cement concrete block

Buccolure



- -A cement concrete block of certain dimension?s proposed with design mix proportions of cement, Sand, coarse aggregate. with coader.
- -) The block is then cured for a cot scorm lemperature for 24 hours
- → Then the block's momented in water for 28 days and then the block 95 neady for testing. → The Block 95 then us cleared and placed on the supports. (2 supports)

-> The load on the block is applied. -> The load is constanly encreased at a constant rele. -> The - Rethere por load is applied whell the failure (Crack an -loom of the block) -> The load at tailure is noted. = They the Alexand strength of uncrede block of - Based on the strength obtained the thickness of the paramet is devided. -> Baud on the strength , the Wolume of the traffic it can carry is calculated End

Gokaraju Rangaraju Institute of Engineering & Technology (Autonomous College Affiliated to JNTUH) (12 Pages) Bachupally, Kukatpally, Hyderabad - 500090 MID TERM EXAMINATION п I No. 18 241 H.T. No. AOI 84 439599 Name of the Examination II Brech II Sero Mid- 2 Examination; Course Pavement Design Branch Civil Engrg - Date 7/5/22 Signature of the Invigilator 4 5 6 TOTAL Q.NO. b a b a b a b b a MARKS START WRITING FROM HERE Joint mens a load applied on slot is shaded 3) adjacent slob for better performance Types! + Transverse joints : Expansion, contraction, Warping 4 construction joints - Longitudinal joints 1) Expansion joints: - joints are provided to allow for expansion of slass due to rise in slab tempratures.

s- Mud pumping :-Sucess water causes mud pumping in the digial pavements. 6. Spalling & Joints :-Joints are broken due to Expunsion of Contraction of blacks on the rigid avements 4) Design & Overlay by Benkelman Bearn method :-1. Benkelman Beam method is used to find the deflections on the flexible pavements 2 when the flaxitle pavement undergoes over moving load, the diffections can be found and obtain design of overlagy. 3. The following is the process for Design of overlay by Benkelman Beam mothed.

6. The Correct Concrete slabs are joined using joints. 7. There are two types of joints. They are: i) Longitudinal soints (i) Transverse joints Joints 1 Longitudinal Joints Fran Sverte Joints Construction Supersion [Contraction ] waping Spirits Joints Joints Toints 5 8. Douds and Ties are fixed to the joints. 9. Dowells are fixed to Transverse joints. to. Thos are fixed to longitudinal soints.

Process:t Firstly, the pavement is chacked properly and prepared to find the calculations. 2. All of the values are calculated with deflections 3. Two types of deflections are found. They are found by taking i) remperature deflections · 11) Traffic deflectors A. By calculating these deflections, we can design the overlay of the pavement. 5. Finally the overlay of the privement is obtaired. Maintenance maindenanco maindenanco with without overlay overlay

6. In this way, Bendelman Bear mothod used to design an overlay. US Rigid lavement Design using IPC 1) Surface Coment Concrete Sub Base Sup Prode Rigid Pavement 2. firstly, the base is chosen 3. Then, surface stype is solvected and placed 4. Cement Concrete is mixed in connect proportions based on the area of the pavement. 5. In this way, the rigid pavement is besigned using IRC