INTRODUCTION TO FLUID MECHANICS (GR20A2012)

II- B.Tech – I Semester (AY 2021-22)

S VENKAT CHARYULU Assistant professor

Department of Civil Engineering

Gokaraju Rangaraju Institute of Engineering and Technology

Bachupally, Kukatpally, Hyderabad – 500 090.

Gokaraju Rangaraju Institute of Engineering and Technology Department of Civil Engineering Introduction to Fluid Mechanics Course File Check List

S.No.	Name of Format	Page No.
1	Syllabus	
2	Time Table	
3	PEOs	
4	Pos	
5	Course Objectives	
6	Course Outcomes	
7	Students Roll List	
8	Guidelines to study the course, books, References, Course design	
	and delivery	
9	Course Schedule	
10	Unit Plan/Course Plan	
11	Evaluation Strategy	
12	Assessment in relation to CO's and COB's	
13	Tutorial Sheets	
14	Assignment Sheet	
15	Rubric for Course	
16	Mappings of CO's and PO's	
17	Model question papers	
18	Mid I & Mid II Question papers	
19	Mid I marks	
20	Mid II marks	
21	Sample Answer scripts and assignments	
22	Course materials like ppt's and Video's	

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY INTRODUCTION TO FLUID MECHANICS

Course Code: GR20A2012 L/T/P/C: 3/0/0/3

II Year I Semester

Pre Requisite: Mathematics

Course Objectives:

- 1. Introduce the concepts of fluid mechanics useful in Civil Engineering application
- 2. Measurement of pressure, computations of hydrostatic forces and the concepts of Buoyancy all final useful applications in many engineering problems.
- 3. Identifying the nature and behavior of fluid flows and distinguish fluid dynamics and kinematics
- 4. Describe the boundary layer flows and predict the drag and lift forces
- 5. Classify the head losses in pipe flows and skill seeing of measurement of flows.

Course Outcomes:

At the end of course, the student will be able to

- 1. Comprehend the various fluid properties and fluid statics.
- 2. Understand the broad principles of hydrostatic forces on submerged planes
- 3. Analyzing fluid dynamics and kinematics.
- 4. classify concept of boundary layer and predict the laminar and turbulent flows
- 5. Predict the losses in pipes flows and able to calculate discharge measurement.

Unit-I

Basic Concepts and Definitions Distinction between a fluid and a solid; Density, Specific weight, Specific gravity, Kinematic and dynamic viscosity; variation of viscosity with temperature, Newton law of viscosity; vapour pressure, boiling point, cavitation; surface tension, capillarity, Bulk modulus of elasticity, compressibility. Fluid Statics - Fluid Pressure: Pressure at a point, Pascal law, pressure variation with temperature, density and altitude. Piezometer, U- Tube Manometer, Single Column Manometer, U-Tube Differential Manometer, Micro manometers. pressure gauges

Unit-II

Hydrostatic Law, Hydrostatic pressure and force: horizontal, vertical and inclined curved surfaces. Introduction explanatory to Buoyancy and meta centre

Unit-III

Fluid Kinematics- Classification of fluid flow: steady and unsteady flow; uniform and non- uniform flow; laminar and turbulent flow; rotational and irrotational flow; compressible and incompressible flow; ideal and real fluid flow; one, two and three dimensional flows ,Stream line, path line, streak line and stream tube; stream function, velocity potential function. One-, two- and three - dimensional continuity equations in 3D-Cartesian coordinates

Fluid Dynamics- Surface and body forces; Equations of motion - Euler's equation; Bernoulli's equation – derivation; Energy Principle; Practical applications of Bernoulli's equation : venturimeter, Momentum principle; Forces exerted by fluid flow on pipe bend;

Unit-IV

Boundary Layer Analysis-Assumption and concept of boundary layer theory. Boundary-layer thickness, displacement, momentum & energy thickness, laminar and Turbulent boundary layers on a flat plate; Laminar sub-layer, smooth and rough boundaries. Local and average friction coefficients. Separation and Controlof boundary layer. N-S equation explanatory.

Laminar Flow- Laminar flow through straight circular pipes.

Turbulent Flow- Reynolds experiment, Transition from laminar to turbulent flow. Definition of turbulence, Causes of turbulence, effect of turbulent flow in pipes. Characteristics of laminar and turbulent flows **Unit-V**

Flow through Pipes: Loss of head through pipes, Darcy-Wiesbatch equation, minor losses (explanatory), total energy equation, hydraulic gradient line, Pipes in series, equivalent pipes, pipes in parallel.

Measurement of Discharge and Velocity: Flow over rectangular, triangular and trapezoidal and Stepped notches. Venture meter, orifice meter and pitot tube.

Text Books

- 1. Modi and Seth, Fluid Mechanics, Standard book house, 19th Edition, 2011.
- 2. S.K.Som & G.Biswas, Introduction to Fluid Machines, Tata Mc.Graw Hill publishers, Pvt. Ltd., 3rd Edition, 2012.
- 3. Edward J. Shaughnessy, M. Katz and James P. Schaffer, Introduction to Fluid Machines, Oxford University Press, New Delhi, 1st Edition, 2005

References Books

- 1. J.F.Douglas, J.M. Gaserek and J.A.Swaffirld, Fluid Mechanics, 5th longmanEdition, 2005.
- 2. Frank.M. White, Fluid Mechanics, Tata Mc. Graw Hill Pvt. Ltd, 4th Edition, 2013.
- 3. A.K. Mohanty, Fluid Mehanics, Prentice Hall ofIndia Pvt. Ltd., New Delhi, 2nd Edition, 1994.
- 4. Dr. R.K. Bansal, A text of Fluid mechanics and hydraulic machines, Laxmi
- 5. Publications (P) ltd., New Delhi, 9th Edition, 2012.

Time Table

S Venkat charyulu

	1	2	3	4	5	6	7
Monday							
Tusday							JFM 1.20 to 2.15pm
Wednesday							
Thursday	nursday IFM 9.00-to 10.4						
Friday							
Saturday				IFM 1.20 - 2.45pm			

Department of Civil Engineering

Department of Civil Engineering (GR20 Regulation)

Vision

To become a pioneering centre in Civil Engineering and technology with attitudes, skills and knowledge

Mission

M1: To produce well qualified and talented engineers by imparting quality education.

M2: To enhance the skills of entrepreneurship, innovativeness, management and lifelong learning in young engineers.

M3: To inculcate professional ethics and make socially responsible engineers

Program Educational Objectives (PEOs)

PEO1: Graduates of the program will be successful in technical and professional career of varied sectors of Civil Engineering.

PEO2: Graduates of the program will have proficiency to analyze and design real time Civil Engineering projects.

PEO3: Graduates of the program will exhibit management and leadership qualities with good communication skills facilitating to work in a multidisciplinary team.

PEO4: Graduates of the program will continue to engage in life-long learning with ethical and social responsibility.

Program Outcomes (PO's)

Graduates of the Civil Engineering program will be able to

PO1: Apply knowledge of mathematics, science and fundamentals of Civil Engineering.

PO2: Analyse problems and interpret the data.

PO3: Design a system component, or process to meet desired needs in Civil Engineering within realistic constraints

PO4: Identify, formulate, analyse and interpret data to solve Civil Engineering problems.

PO5: Use modern engineering tools such as CAD and GIS for the Civil Engineering practice.

PO6: Understand the impact of engineering solutions in a global, economic and societal context.

PO7: Understand the effect of Civil Engineering solutions on environment and to demonstrate the need for sustainable development.

PO8: Understand the professional and ethical responsibility.

PO9: Work effectively as an individual or in a team and function with multi-disciplinary context.

PO10: Communicate effectively with engineering community and society.

PO11: Demonstrate the management principles in Civil Engineering projects.

PO12: Recognize the need for and an ability to engage in life-long learning.

Program Specific Outcomes (PSO's)

PSO1: Recognize the need for a sustainable environment and design smart infrastructure considering the global challenges.

PSO2: Create and develop innovative designs with new era materials through research and development.

Academic Year

5

Date:

Signature of HOD

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

COURSE OBJECTIVES

2021-22

Semes	ster : I								
Name	Name of the Program: B.TechII								
	Course/Subject: INTRODUCTION To FLUID MECHANICS Course Code: GR1A2010								
Name	of the Faculty: S.VENKAT CHARYULU Dept. CIVIL ENGINEERING								
Design	nation: ASSISTANT PROFESSOR								
On con	mpletion of this Subject/Course the student shall be able to:								
S.No	Objectives								
1	Elaborate the concepts of fluid mechanics useful in Civil Engineering application								
2	Analyze the Measurement of pressure, computations of hydrostatic forces and the concepts of								
	Buoyancy all final useful applications in many engineering problems								
3	Recognize the nature and behavior of fluid flows and distinguish fluid dynamics and kinematics								
4	Describe the boundary layer flows and predict the drag and lift forces								

Signature of faculty

Date:18-2-2022

Classify the head losses in pipe flows and skill seeing of measurement of flows.

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

COURSE OUTCOMES

Academi	c Y ear : 2021-22
Semester	: I
Name of	the Program: B.TechII
Course/S GR15A2	dubject: INTRODUCTION FLUID MECHANICS
Name of	the Faculty: S.VENKAT CHARYULUDept.:CIVIL ENGINEERING
Designat	ion: ASSISTANT PROFESSOR
The expe	cted outcomes of the Course/Subject students shall able to:
S.No	Course Outcomes
S.No	Course Outcomes 1. Comprehend the various fluid properties and fluid statics .
1	1. Comprehend the various fluid properties and fluid statics .
2	Comprehend the various fluid properties and fluid statics . Understand the broad principles of hydrostatic forces on submerged planes
2 3	Comprehend the various fluid properties and fluid statics . Understand the broad principles of hydrostatic forces on submerged planes Analyzing fluid dynamics and kinematics.
1 2 3 4	1. Comprehend the various fluid properties and fluid statics. 2. Understand the broad principles of hydrostatic forces on submerged planes 3. Analyzing fluid dynamics and kinematics. 4. Classify concept of boundary layer and predict the laminar and turbulent flows
1 2 3 4	 Comprehend the various fluid properties and fluid statics. Understand the broad principles of hydrostatic forces on submerged planes Analyzing fluid dynamics and kinematics. Classify concept of boundary layer and predict the laminar and turbulent flows Predict the losses in pipes flows and able to calculate discharge measurement

Gokaraju Rangaraju Institute of Engineering & Technology Bachupally, Nizampet Road, Kukatpally, Hyderabad-500009 B.Tech Civil Engg, II Yr-II Sem - GR 20 A.Y; 2021-22

S.No Student Name 20241A0101 AADHI SRIKAR RAO 20241A0102 ABHIRAM SAI YADAV JANGITI 20241A0103 BACCHUGUDAM RITHVIK REDDY 20241A0104 BANDLA NAVEEN 20241A0105 B.PRANAV SAI 20241A0106 BHATTU SUPREETH CHAKRAVARTHY 6 20241A0107 BHUPATHIRAJU HIMANTHAVARMA 8 20241A0108 BOINI HEMANTH 20241A0109 CHALLA AJAY KUMAR 10 20241A0110 DONABOINA SRI HARI 20241A0111 EPPA ARNAV 11 12 20241A0112 G L N RAGHURAMAN 13 20241A0113 GANDLA HARSHITH KUMAR 14 20241A0114 GUGGILLA SHASHANK 20241A0115 GUNDA SRIKANTH 15 16 20241A0116 JANGILI SRAVAN KUMAR 17 20241A0117 JANJIRALA SRUTHI 18 20241A0118 JARAPULA JAYANTH 19 20241A0119 K NIKHITHA 20 20241A0121 K.KONDAL 21 20241A0122 KAMMAMPATI UDAYKIRAN 22 20241A0123 KARNE SRITHAN 23 20241A0124 KUNCHALA VARUN KUMAR 20241A0125 KUNTA NITHIN REDDY 24 20241A0126 M PAVAN KALYAN 25 26 20241A0127 MERE MAHESH 27 20241A0128 MOHAMMED AHMED 28 20241A0129 MOTHUKURI LAXMAN 20241A0130 MOTTADI ADITYA TEJA 29 30 20241A0131 MULA SUSHMA SRI 31 20241A0132 NAYINI SWETHA 32 20241A0133 PAIDIPALLY BHARATH 33 20241A0134 P.SAI KIRAN REDDY 34 20241A0135 PASNOOR PAVAN PRATHAP REDDY 35 20241A0136 PATHLAVATH SHIVA NAYAK 20241A0137 PEDDIBOINA ANUSHA 36 37 20241A0138 POREDDY ABHINAV REDDY 38 20241A0139 PULLAGURA SANTHOSH 39 20241A0140 RACHALA BHARATH 40 20241A0141 RADHARAPU SHAJI KUMAR 41 20241A0142 RAMAVATH ROJA 42 20241A0143 RATHLAVATH SAIRAM NAYAK 20241A0144 RAVI TEJA PASUNUTHI 43 44 20241A0146 SADDI SHRIANK REDDY 45 20241A0147 SATHVIKA NARLA 46 20241A0148 SOKKULA KOUSHIKREDDY 47 20241A0149 SRIRAM PANDAVULA 20241A0150 T.BHARGAVI 48 49 20241A0151 T.BHUVANESHWARI 50 20241A0152 S.TEJA RETIESH REDDY 51 20241A0153 TEJAVATH KALYANI 20241A0154 TELLAPURAM PRUDHVI RAJ 52 53 20241A0155 THADEM ROHITH 54 20241A0156 THUMMALA RAJASHEKAR 55 20241A0157 UVSGR KAMESWARA SAI KARTHIK 56 20241A0158 SREERAM VATTEM 57 20241A0159 V VIKESH 58 20241A0160 VENNAM SRIKAR 21245A0101 GUMADAVELLI ARUN KUMAR 59 21245A0102 KADIRABAD SRIRAM 60 21245A0103 MANIKONDA NIKITHA 61 21245A0104 PARIDULA PRATHYUSHA 62 63 21245A0105 PATERU MOUNA

Guidelines to Study The Course Books and References

Course Design and Delivery

Reference Books/suggested	
Fliud Mechanics by J.F.Douglas, J.M Gaserek and j. A Swaffirld	

Text Books								
1	Fliud Mechanics By Modi And Seth, Standard Book House							
2	Open Channel Flows By S.K Subramanya							
3	Introduction To Fluid Mechanics By Edward J.Shaughnessy, Jr.Iram.Katz And James PSchaffer, Oxfard University Press, New Yark, New Delhi							
4	Text Book Of Fluid Mechanics And Hydraulics Machines By Dr.R.K.Bansal Laxmi Publication New Delhi							
5	Hydraulic Machines By SK Banga And Sharma							
Fliud N	Fliud Mechanics by Frank White(TaTamc. Grawhill pvt.Ltd)							
Fliud N	Mechanics by A.K Mohanty, prentice hall of india pvt.Ltd, New Delhi							
Fliud N	Fliud Mechanics and Hydraulics machines by Rajput							

Websi	ites
1	NPTEL : Civil Engineering - Hydraulics
	nptel.ac.in/courses/105103096/
	Introduction to Hydraulics · Open Channel Hydraulic Part - 1 · Open
	Channel Hydraulics
2	Hydraulics - NPTEL PHASE 2 - Courses
	nptel.ac.in/video.php? subjected =105103096
	Hydraulics (Video) >> 1
3	nptel.ac.in/courses/Webcourse/IIT/machine//Course_home-lec1a.ht
4	www.youtube.com/watch?v=z9wsUWaN

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

COURSE SCHEDULE

Academic Year : 2021-22 Semester : I

Name of the Program: B.Tech II Year Section: A

Course/Subject:FLUID MECHANICS...... Course Code: GR20A2012

Name of the Faculty:S.VENKAT CHARYULUDept.:...CIVIL ENGINEERING

Designation : ASSISTANT PROFESSOR.

The Schedule for the whole Course / Subject is:

		Duration	Total No.	
S. No.	Description	From	То	TotQfNo.
S. No.	Description		I	Perjopds
	Unit I- Dimensions and units physical properties of	7/10/21	20/10/21	1 Periods
1.	fluids specific gravity, viscosity, surface tension, vapor			
	pressure and their influences on fluid motion pressure			
	at a point,pascal law, atmospheric ,gauage and vacuum			
	pressure, measurement of pressure, pressure gauage,			
	manometer, dfferemntial and micro manometer.			
	Unit II -hydrostatic forces on submerged	21/10/21	30/10/21	9
2.	plane, horizontal, vertical, inclined and curved surface,			
	center of pressure derivation and problems.			
	Unit III FLUID KINEMATICS Description of fluid	3/11/21	5/1/21	14
3.	flow, stream line pathline and streak line and stream			
	tube classification of flows steady, unsteady uniform			
	non uniform laminar and turbulent rotational			
	irrotational flows equation of Continuity for one two			
	three dimensional flows stream and velocity potential			
	function flow net analysis			
	FLUID DYNAMICSSurface and body-forces-euler			
	and bernoullies equation for flow along a stream line			
	for 3D flow (Navier stokes equation explanationary			
)momentum equation and its application forces on pipe			
	bend.			
	BOUNDARY LAYER THEORY Approximate solution	9/12/21	30/12/21	16
4.	of navierstokes equation boundary layer concept			
	prandtl contribution, character stics of boundary layer			

5.	along a thin flat plate, vonkormen momentum integral equation la minar and turbulent boundary layer no derivation boundary layer in transition sepa ration of boundary layer flow around the submerged objects drag and lift magnus effect. LAMINOR ANDLAMINAR AND TURBULENT FLOWS, Reynolds experiment , Characteristics of Laminar flows and Turbulent Flows, Flows between parallel plate, Flows through the long tubes, Flow through inclined tubes, CLOSED CONDUIT FLOW Law of fluid friction darcy equation minor losses pipes in series pipes parallel total energy line and hydraulic energy line . pipe network and problem variation of friction factor with the Reynolds number Moody chart. MEASUREMENT OF FLOWS Pitot tube venturimeter and orifice meter classification of orifice, flow over a rectangle, triangle and trapezoidal and stepped notches and broad crested weir.	5/1/22	19/1/22	7
6	Revision	20/1/22	29/1/22	4

Total No. of Instructional periods available for the course:61.... Hours / Periods

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS

UNIT PLAN

Academic Year : 2021-22

Designation: ASST.PROFESSOR

Designation. ASS1.1 KOTESSOK							
			No. of		Objectives	Blooms	References
	Lesson	Date	Periods	Topics / Sub-Topics	&Outcomes	Taxonomy	(Text Book, Journal)
	No.				Nos.	•	Page Nos.: from to
		6/10/21	1	Dimensions and units	Cob1 & C01	K3	Fluid Mechanics and
	1.			introduction to fluid			Hydraulic Machines
				mechanics			(FM&HM)Dr PN Modi
							&DrSM Seth, 4

2.	7/10/21	1	Physical properties of fluids: specific gravity, viscosity,	Cob1 & C01	K2	Fluid Mechanics and Hydraulic Machines by Dr.RkBansal 2 -10
3.	7/10/21	1	surface tension, vapor pressure - their influences on fluid motion	Cob1 & C01	K3	Fluid Mechanics and Hydraulic Machines by Modi &Seth12-21
4.	9/10/21	1	Pressure at a point, Pascal's law Pressure gauges, and Micro Manometers r problems	Cob1 & C01	K2	FM&HM by Dr.Rk Bansal 35,42-55
5.	9/10/21	1	Hydrostatic law problems	Cob1 & C01	K4	F.M and HM by Dr. R.k Bansal 37-41
6.	13/10/21	1	Atmospheric, gauge and vacuum pressure –.	Cob1 & C01	K2	FM&HM by Dr PN Modi &DrSM Seth 52
7.	14/10/21	1	measurement of pressure problems	Cob1 & C01	K2	FM&HM by Dr PN Modi &DrSM Seth 73
8.	14/10/21	1	measurement of pressure problems	Cob1 & C01	K2	FM&HM by Dr PN Modi &DrSM Seth 76
9.	16/10/21	1	Differential Manometers problem	Cob1 & C01	K4	FM&HM by Dr PN Modi &DrSM Seth79
10.	16/10/21	1	Pressure gauges Manometers classification	Cob1 & C01	K3	FM&HM by Dr PN Modi &DrSM Seth 69
11	16/10/21	1	Pressure gauges nom eters classification problems	Cob1 & C01	K3	FM&HM by Dr PN Modi &DrSM Seth 69
12	20/10/21	1	Differential Manometers problem	Cob1 & C01	K4	FM&HM by Dr PN Modi &DrSM Seth79
13	20/10/21	1	Micro Manometer expression	Cob1 & C01	K2	FM&HM by Dr PN Modi &DrSM Seth79

Signature of HOD Date:

Signature of faculty

Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS

UNIT PLAN

Academic Year	: 2021-22		
Semester	: I/II	UNIT NO.:	II
Name of the Progra	m: B.TechII	Year:2021-22	Section: A
Course/Subject:	INTRODUCTION .TO. FL	UID MECHANICSCourse C	ode: GR20A2012
Name of the Facult	y: S.VENKAT CHARY	ULUDept.: CIVIL E	NGINEERING
Designation: ASSI	STANT PROFESSOR		

Lesson No.	Date	No. of Periods	Topics / Sub-Topics	Objectives & Outcomes Nos.	Blooms Taxonomy	References (Text Book, Journal) Page Nos.:to
1.	21/10/21	1	Hydrostatic forces introduction of statics kinematics and dynamic forceson plane and - center of pressure. problems.	Cob2 & C02	K2	FM&HM by Dr PN Modi &Dr.SM Seth 99 F.M and HM by Dr. R.k Bansal 69
2.	21/10/21	1	Hydrostatic forces on horizontal submerged plane Derivation	Cob2 & C02	K4	F.M and HM by Dr. R.k Bansal 85-86
3.	23/10/21	1	Hydrostatic forces on Vertical submerged plane Derivation	Cob2 & C02	K5	F.M and HM by Dr. R.k Bansal 69-72
4.	23/10/21	1	Hydrostatic forces on inclined submerged plane	Cob2 & C02	K4	F.M and HM by Dr. R.k Bansal 86-88
5.	27/10/21	1	Hydrostatic forces on curved Submerged plane derivation	Cob2 & C02	K5	F.M and HM by Dr. R.k Bansal97-99
6.	27/10/21	1	Problems on Horizontal submerged surface	Cob2 & C02	K5	F.M and HM by Dr. R.k Bansal 85
7	28/10/21	1	Problems on vertical submerged surface	Cob2 & C02	К3	F.M and HM by Dr. R.k Bansal 70
8	28/10/21	1	Problems on inclined submerged surface	Cob2 & C02	K4	F.M and HM by Dr. R.k Bansal 97
9	30/10/21		Problems on inclined submerged surface	Cob2 & C02	K5	F.M and HM by Dr. R.k Bansal 97

Signature of HOD

Date:

Signature of faculty
Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS

UNIT PLAN

Academic Year :

Course/Subject: FLUID MECHANICS......... Course Code: GR20A2012 Name of the Faculty: ... S.VENKAT CHARYULU.......Dept.: CIVIL ENGINEERING

Designation: ASST.PROFESSOR

		No.		Cobjectiv	Blooms	References
Lesson	Date	of	Topics / Sub-Topics	es &	Taxonomy	(Text Book, Journal)
No.		Perio		Outcome		Page Nos.:to
		d ds		s Nos.		
	6/11/202	1	FLUID KINEMATICS:	Cob3 &		
1.	1		Description of fluid flow	C03	K2	K2
	6/11/202	1	Stream line,path line and	Cob3 &		F.M & HM by Dr PN Modi
2.	1		streak lines, stream tube. problems	C03	K5	&Dr.SM Seth 272
		1	Classification of flows	Cob3 &		F.M & HM by Dr. R.k
3.			Steady, unsteady uniform	C03		Bansal 163-66 & by Dr PN
			non-uniform,laminar,		K5	Modi &Dr.SM Seth 238
	10/11/21		turbulent, rotational and			
	11/11/21	1	irrotational flows - Steady, unsteady problems	Cob3 &		F.M & HM by Dr. R.k
4.	11/11/21	1	Steady, unsteady problems	C03	K5	Bansal172-174
	11/11/21		rotational and irrotational	Cob3 &	K5	F.M & HM by Dr. R.k
5.			flows	C03	113	Bansal 258
		1	Equation of continuity for	Cob3 &		F.M & HM by Dr PN Modi
6.	13/11/21		one, two and three dimensional flows.	C03	K5	&Dr.SM Seth 269
	13/11/21	1	Equation of continuity	Cob3 &	K5	F.M & HM by Dr PN Modi
7.			problems	C03	KS	&Dr.SM Seth267
		1	Stream ,velocity potential	Cob3 &		F.M & HM by Dr. R.k
8.	17/11/21		functn, flownet analysis	C03	K5	Bansal166-70,75-80, 84-91
			problems			
_		1	FLUID DYNAMICS:	Cob3 &	T7.5	F.M & HM by Dr. R.k
9.	18/11/21		Surface and body forces	C03	K5	Bansal 259 by Dr PN Modi
			problems	G 12 0		&Dr.SM Seth292 293
10	40/44/00	1	Euler's and Bernoulli's	Cob3 &		F.M & HM by Dr. R.k
10.	18/11/21		equations for flow along a stream line	C03		Bansal 259-61
	26/11/21	1	Navier stokes equations	Cob3 &		F.M & HM by Dr PN Modi
11			(Explanation) problems	C03		&Dr.SM Seth294

12	26/11/20 21	1	Momentum equation and itsapplication	Cob3 & C03	F.M & HM by Dr. R.k Bansal288 Modi &Dr.SM Seth358-63
13.	1/12/21		forces on pipe bend	Cob3 &	Dr PN Modi &Dr.SM Seth
			problems	C03	363
	8/12/21	1	Problems on various	Cob3 &	F.M & HM by Dr. R.k
14			models.	C03	Bansal261,66-68,98-300

Signature of HOD Date:

Signature of faculty

Date:

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS

UNIT PLAN

Academic Year : 2021-22

Semester : I / II UNIT NO.: ...IV.....

Course/Subject: FLUID MECHANICS... Course Code: GR20A2012

Name of the Faculty: ... S.VENKAT CHARYULU......Dept.: CIVIL ENGINEERING

Designation: ASST.PROFESSOR

		No. of		Cobjectives	Blooms	References
Lesson	Date	Periods	Topics / Sub-Topics	&	Taxonom	(Text Book, Journal)
No.				Outcomes	y	Page Nos.:to
				Nos.		
1.	9/12/21	1	BOUNDARY LAYER THEORY: Approximate Solutions of Navier Stoke's Equations	Cobs: 4 Cos:4	K5	F.M & HM by Dr. R.k Bansal 611 F.M & HM by Dr PN Modi &Dr.SM Seth
2.	8/12/21	1	Boundary layer - concepts, Prandtl contribution problems	Cobs:4 Cos:4	K5	F.M & HM by Dr. R.k Bansal438,568,667-72
3.	11/12/21	1	Characteristics of boundary layer along a thin flat plate problems	Cobs:4 Cos:4	K5	F.M & HM by Dr. R.k Bansal612 -16
4.	15/12/21	1	Vonkarmen momentum integral equation,	Cobs:4 Cos:4	K5	F.M & HM by Dr PN Modi &Dr.SM Seth
5.	16/12/21	1	Laminar and turbulent Boundary layers(no deviations), problems	Cobs:4 Cos:4	K5	F.M & HM by Dr. R.k Bansal638-48

6.	18/12/21	1	BL in transition separation of BL, control of BL, flow around submerged problems	Cobs: 4 Cos:4	K5	F.M & HM by Dr. R.k Bansal 648-51 F.M & HM by Dr PN Modi &Dr.SM Seth579-84
7.	22/12/21	1	Cobjects-Drag and Lift- Magnus effect. Problems	Cobs:4 Cos:4	K2	F.M & HM by Dr. R.k Bansal658-787
8.	23/12/21	1	laminar & turbulent flows: reynold's experiment characteristics of laminar turbulent flows.	Cobs:4 Cos:4	K5	F.M & HM by Dr. R.k Bansal 433,387,433 FM & HM by Dr PN Modi &Dr.SM Seth
9.	25/12/21	1	Flow betweenPlates Flow through long tubes	Cobs:4 Cos:4	K4	F.M & HM by Dr PN Modi &Dr.SM Seth602-10,14-17
10.	29/12/21	1	flow through inclined tubes. Derivation and problems	Cobs:4 Cos:4	K5	F.M & HM by Dr PN Modi &Dr.SM Seth645
11	30/12/21	1	Problems on varius models	Cobs:4 Cos:4	К3	F.M & HM by Dr. R.k Bansal56-57
12	9/12/21	1	Problems on varius models	Cobs:4 Cos:4	K5	F.M & HM by Dr. R.k Bansal 400,419,427-29
13.	8/12/21	1	Problems on varius models	Cobs:4 Cos:4	K4	F.M & HM by Dr. R.k Bansal 448-450,53-62
14	11/12/21	1	Problems on varius models	Cobs: 4 Cos:4	K5	F.M & HM by Dr. R.k Bansal 453-62

Signature of HOD

Signature of faculty

Date Date

Date Date

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS

UNIT PLAN

Academic Year : 2021-22

Course/Subject: FLUID MECHANICS... Course Code: GR20A2012

Name of the Faculty: ... S.VENKAT CHARYULU......Dept.: CIVIL ENGINEERING

Designation: ASST.PROFESSOR

		No. of		Cobjectives	Blooms	References
Lesson	Date	Periods	Topics / Sub-Topics	&	Taxonomy	(Text Book,
No.				Outcomes		Journal)
				Nos.		Page Nos.:to
	5/1/22	1	closed conduit flow:	Cob5 &		F.M & HM by Dr. R.k
1.			laws of fluid friction - Darcy's equation, minor losses	C05	K3	Bansal465
	6/1/22	1	pipes in series - pipes in	Cob5 &		F.M & HM by Dr. R.k
2.	J, 2, 2		parallel Pipe network problems	C04	K5	Bansal 498-502,,508-9
	8/1/22	1	Total energy line and	Cob5 &		F.M & HM by Dr. R.k
3.			hydraulic gradient line	C05	K5	Bansal 491498,
	12/1/22	1	variation of friction	Cob5 & C0		F.M & HM by Dr PN
4.			factor with Reynolds's	4	K5	Modi &Dr.SM
			number - Moody's Chart.			Seth673,83
	13/1/22	1	measurement of flow:	Cob5 &		F.M & HM by Dr. R.k
5.			pitot tube, venturi meter	C05	K5	Bansal 268-278
	15/1/22	1	measurement of flow:	Cob5 &		F.M & HM by Dr. R.k
6.			pitot tube, venturimeter	C05	K5	Bansal 278-88,
	19/1/22	1	orifice meter -	Cob5 &		F.M & HM by Dr. R.k
7.			classification of	C05		Bansal317-19
			orifices, flow over		K4	
			rectangular, triangular			
	20/1/22	1	trapezoidal and Stepped	Cob5 & C0		F.M & HM by Dr. R.k
8.			notches -Broad crested	5	K4	Bansal 448-450, 328,
			weirs.	~		358-61, 61-63
	20/1/22	1	Pitot tube, Venturi	Cob5 &	K5	F.M & HM by Dr. R.k
9.			meter			Bansal 286-88

				C05		
10.	22/1/22	1	orifices, flow over rectangular	Cob5 & C07	К3	F.M & HM by Dr. R.k Bansal319,31-321
11	22/1/22	1	pipes in series - Problems	Cob5 & C07	K5	F.M & HM by Dr. R.k Bansal503-7
12	26/1/22	1	pipes in parallel Problems	Cob5 & C07	K5	F.M & HM by Dr. R.k Bansal 509-14
13.	27/2/22	1	Total energy line Problems	Cob5 & 7	K5	F.M & HM by Dr. R.k Bansal 498-99

Signature of HOD Date:

Signature of faculty Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS

COURSE PLAN

Academic Year : 2021-22

Semester : I UNIT NO.:I......

Course/Subject: INTRODUCTION TO FLUID MECHANICS...... Course Code: : GR20A2012 Name of the Faculty: ... S.VENKAT CHARYULU.........Dept.: CIVIL ENGINEERING

Designation: ASSISTANT PROFESSOR

unit	BTL			No. of	Description
I	2	.1	6/10/21	1	Dimensions and units introduction to fluid mechanics
	3	2	7/10/21	1	Physical properties of fluids: specific gravity, viscosity,
	2	3	7/10/21	1	surface tension, vapor pressure - their influences on fluid
	3	4	9/10/21	1	Pressure at a point, Pressure gauges, Manometers r
		5	9/10/21	1	Pascal's law ,Micro Manometers r problems
	2	6	13/10/21	1	Hydrostatic law problems
	3	7	14/10/21	1	Atmospheric, gauge and vacuum pressure –.
	2	8	14/10/21	1	measurement of pressure problems
	2	9	16/10/21	1	Pressure gauges Manometers classification
	2	10	16/10/21	1	Differential Manometers problem
	3	11	20/10/21	1	Micro Manometer expression
II	3	12	21/10/21	1	Inclined manometer
	3	13	21/10/21	1	Inverted manometer
	2	14	23/10/21	1	Hydrostatic forces introduction of statics kinematics
	3	15	23/10/21	1	Hydrostatic forces on horizontal submerged plane
	3	16	27/10/21	1	Hydrostatic forces on Vertical submerged plane
	3	17	28/10/21	1	Hydrostatic forces on inclined submerged plane
	2	18	28/10/21	1	Hydrostatic forces on curved Submerged plane derivation
	3	19	30/10/21	1	Problems on Horizontal submerged surface
III	2	20	30/10/21	1	Problems on vertical submerged surface
	2	21	3/11/200	1	Problems on inclined submerged surface
	2	22	4/11/202	1	FLUID KINEMATICS: Description of fluid flow
	2	23	4/11/202	1	Stream line,path line and streak lines, stream tube.
	3	24	6/11/202	1	Classification of flows Steady, unsteady uniform non-
	3	25	6/11/202	1	Steady, unsteady problems
	2	26	10/11/21	1	rotational and irrotational flows
	2	27	11/11/21	1	Equation of continuity for one, two and three
	3	28	11/11/21	1	Equation of continuity problems
	2	29	13/11/21	1	Stream ,velocity potential function, flownet analysis
	2	30	13/11/21	1	FLUID DYNAMICS: Surface and body forces

3	31	17/11/21		Euler's and Bernoulli's equations for flow along a stream
2	32	18/11/21	1	Navier stokes equations (Explanation) problems
2	33	18/11/21	1	Momentum equation and its
3	34	26/11/21	1	forces on pipe bend problems
2	35	26/11/20	1	BOUNDARY LAYER THEORY: Approximate
2	36	1/12/21	1	Boundary layer - concepts, Prandtl contribution
3	37	8/12/21	1	Characteristics of boundary layer along a thin flat plate
2	38	9/12/21	1	Vonkarmen momentum integral equation,
3	39	8/12/21	1	Laminar and turbulent Boundary layers(no deviations),
2	40	11/12/21	1	BL in transition separation of BL, control of BL, flow
2	41	15/12/21	1	objects-Drag and Lift- Magnus effect. Problems
2	42	16/12/21	1	laminar & turbulent flows: reynold's experiment
3	43	18/12/21	1	Flow between Plates Flow through long tubes
2	44	22/12/21	1	flow through inclined tubes.
2	45	23/12/21	1	Problems on varius models
3	46	25/12/21	1	Problems on varius models
2	47	29/12/21	1	Problems on varius models
3	48	30/12/21	1	Problems on varius models
3	49	5/1/22	1	closed conduit flow: laws of fluid friction - Darcy's
3	50	6/1/22	1	pipes in series - pipes in parallel Pipe network problems
3	51	8/1/22	1	Total energy line and hydraulic gradient line
2	52	12/1/22	1	measurement of flow: pitot tube, venturi meter
3	53	13/1/22	1	measurement of flow: pitot tube, venturimeter
2	54	15/1/22	1	orifice meter - classification of orifices, flow over
3	55	19/1/22	1	trapezoidal and Stepped notches -Broad crested weirs.
2	56	20/1/22	1	Pitot tube, Venturi meter
2	57	20/1/22	1	orifices, flow over rectangular
2	58	22/1/22	1	pipes in series - Problem
3	59	22/1/22	1	pipes in parallel Problem
3	60	26/1/22	1	Total energy line Problem
3	61	27/1/22	1	hydraulic gradient line Problem

Academic Year Semester Name of the Program	: 2021-22 : I : B.Tech II Year	Date: 4/10/21 Section: A
Course/Subject: INTRODUC	TION TO FLUID MECHAN	ICS Course Code: GR20A2012
Name of the Faculty: S.VI	ENKAT CHARYULU	Dept.: CIVIL ENGINEERING
Designation: ASSISTANT F	PROFESSOR	
Lesson No:1	Duratio	on of Lesson: 1hr
Lesson Title: Dimension	s and units introduction to fluid	mechanics
INSTRUCTIONAL/LESSON	OBJECTIVES:	
2. Discuss the various	mensions of various physical or systems of units finition, solids, liquids and ga	•
Dimensions of physical qua		- -
Assignment / Questions: Q.) 2.Asst.) what is different type 3.) Convert a pressure head of 4) Express 20.2m in water in	s of system of units? Disco	
Course bjectives: 1	course Outcomes: 1	

Academic Year	: 2021-22	Date: 5/10/21
Semester	: I	
Name of the Program	m : B.Tech II Year	Section: A
Course/Subject: IN	FRODUCTION TO FLUID MECH	HANICS Course Code: GR20A2012
Name of the Faculty	y: S.VENKAT CHARYULU	Dept.: CIVIL ENGINEERING
Designation: ASSIS	STANT PROFESSOR	
Lesson No:	2	ion of Lesson: 1hr
Lesson Title: I	Physical properties of fluids: specific g	ravity, viscosity,
INSTRUCTIONAL	/LESSON OBJECTIVES:	
Physical properties of	f fluids: specific gravity, viscosity,	
On completion of th	nis lesson the student shall be able t	io:
*	of various physical properties	
2. what do u u	understand the specific gravity, vis	scosity?
3. Explain the	e fluid mass density, weight density	,
4. compute	on mass density, weight density re	lated given data
TEACHING AIDS TEACHING POINT	: White Board /Marker ΓS :	
-	d. Viscosity fo fluids,	
Classification of		vide ete
Newton law of vi	Newtonian,thixotropic plastic,idel fl	uids etc.
Problems on visc	•	
Assignment / Questio 2.Asst.) what is differ 3.If the velocity of prevelocity is 140 m/sec	ons: 1. Q.)what is viscosity, realation vent types of fluids? Discuss ofile of a fluid over a plate is parabolic	with kinematic viscosity? with the vertex of 30 cm from the plate, where the disheer stress at a distance of 0,20 and 25 cm from
course objectives:	1 Course Outcomes: 1	

Signature of faculty

Academic Year	: 2021-22	Date: 6/10/21
Semester	: I	a
Name of the Program: B.T		Section: A
·		ANICS Course Code: GR20A2012
		Dept.: CIVIL ENGINEERING
Designation: ASSISTAN		ation of Lesson: 1hr
	tension, vapor pressure - their in	
Lesson Titlesurface	tension, vapor pressure - then in	indences on made motion
INSTRUCTIONAL/LESS	SON OBJECTIVES:	
On completion of this less	son the student shall be Able to	0
1. Explain the surface	ce tension, vapor pressure - their	rinfluences on fluid motion
2. understand the ter	nsion influences on fluid motion	
3. Identify the fluid	of surface tension, vapour pres	sure In real where it is exist
4. Calculate the pro	blems on surface tension.	
TEACHING AIDS	: White Board /Marker	
TEACHING POINTS:	ut soon bubble liquid ist and ma	ated formulas and pushlams
Vapor pressure, actual ex	et, soap bubble, liquid jet, and relistence.	lated formulas and problems
Compressibility		
Assignment / Questions: 1. 2.Asst.) what is vapor press	Q.)what is surface tension write our Poiscuss	different cases?
		of 5 mm diameter, when immersed in (i) water, and
		ues of the surface tension of the water and mercury respectively . the angle of contact for water is zero
	the density of water at 20°c as eq	
		Signature of faculty
Course biectives: 1	course Outcomes: 1	

Academic Year :	2021-22	Date:6/10/21
Semester :	I	
Name of the Program: B.Tech II Ye	ar	Section: A
Course/Subject: INTRODUCTION	TO FLUID MECHAN	ICS Course Code: GR20A2012
Name of the Faculty: S.VENKA	Γ CHARYULU	Dept.: CIVIL ENGINEERING
Designation: ASSISTANT PROFE Lesson No:4 Lesson Title: Pressure at a point	Duration	on of Lesson: 1hr
INSTRUCTIONAL/LESSON OBJE On completion of this lesson the stude 1 Enumerate Pressure at any po	dent shall be :	
2. Ddifferentiated the purpose of	of the Pascal's law	
3. Illustrate to explain the Press	ure gauges useages and n	neasurements
4. Identified the Different function	tion of Micro manometer	, Manometers r problems
TEACHING AIDS : White B TEACHING POINTS :	oard /Marker	
Definition and derivation Pascal Manometers their classification. Micromanometer		ometer etc
Assignment / Questions: 1. Q.) what 2.Asst.) what is different types of m		

3. Calculate pressure due to the Column of 0.3 of (a)water (b)an oil of sp . gr . 0.8 , and (C) mercury of sp .gr .13.6. take density of water $p=1000~{\rm kg/m^3}$.

Course objectives: 1 Course Outcomes: 1

Academic Year	:	2021-22		Date:7/10/21
Semester Name of the Program: B.Tec	: h II Ye	-	Section: A	
Course/Subject: INTRODUC	TION	TO FLUID MECHA	NICS Course C	Code: GR20A2012
Name of the Faculty: S.V	ENKA	Γ CHARYULU	Dept.: CI	VIL ENGINEERING
Designation: ASSISTANT	PROFE	ESSOR		
Lesson No:5		Durat	ion of Lesson: 1	<u>lhr</u>
Lesson Title:Hydrostatic la	.W			
INSTRUCTIONAL/LESSON	√OBJE	ECTIVES:		
On completion of this lesson	the stu	dent shall be able to		
 Discuss the Hydrostat Illustrate by the solv Distinguish static fl Define fluid statics a 	ing the uids	static fluid problem a	and explain	
TEACHING AIDS : V TEACHING POINTS :	Vhite B	oard /Marker		
Hydrostatic law definition se	olving t	the fluid problems		
Hydrostatic law derivation s	olving	the static fluid proble	ms	
oil	sst.) Aı of sp.gr	n open tank contains v	vater up to depth m . find the pres	n of two meters above it in an assure intensity (i) at the inter k.
Course objectives:	1	course Outcomes:	1	Signature of faculty

Academic Year	: 2021-22	Date: 7/10/21
Semester	: I	
Name of the Program: B.Te	ch II Year	Section: A
Course/Subject: INTRODU	CTION TO FLUID M	IECHANICS Course Code: GR20A2012
Name of the Faculty: S.V	ENKAT CHARYUL	UDept.: CIVIL ENGINEERING
Designation: ASSISTANT	PROFESSOR	
Lesson No:6		. Duration of Lesson: <u>1hr</u>
Lesson Title: Atmosphe	ric, gauge and vacuum p	pressure –.
INSTRUCTIONAL/LESSO	N OBJECTIVES:	
On completion of this lesson		
1. classify various sys	tem of units of atmosp	heric pressures
2. Disuses various ga	liga pracciira	
2. Disuses various ga	age pressure.	
3. Explain the fluids de	efinition atmospheric p	ressure, gauge & vacuums pressure
4. solve atmospheric p	pressure, gauge and va	cuum pressure problem as per the model given.
TEACHING AIDS : TEACHING POINTS :	White Board /Marker	
Definition of atmospheric Diagrametic representation Absolute pressure		vacuum pressure
=	of sp.gr.13.6. take dens	are due to the Column of 0.3 of (a) water (b) an oil of sp ity of water $p = 1000 \text{ kg/m}^3$. ge and absolute pressure.
Course objectives: 1	course Outcomes:	1 Signature of faculty

Academic Year : 2021-22 Semester : I	Date 7/10/21
Name of the Program: B.Tech II Year	Section: A
Course/Subject: INTRODUCTION TO FLUID MEC	CHANICS Course Code: GR20A2012
Name of the Faculty: S.VENKAT CHARYULU.	
Designation: ASSISTANT PROFESSOR	•
Lesson No:	Puration of Lesson: 1hr
Lesson Title: measurement of pressure and problem	
INSTRUCTIONAL/LESSON OBJECTIVES:	
On completion of this lesson the student can:	
1. Assess measure the pressures using the diff	ferential manometer
2. Classify various pressure measurement instrur	nents
3. Recognise the pressure measurement instrum	nents
TEACHING AIDS : White Board / Marker	
TEACHING POINTS :	
Definition of pressure and its measurement. Classification of pressure measurement instrument	
Classification of pressure measurement instrument	.5.
Assignment / Questions: 1. Q.) A differential manometer centre distance between them is 3m . the pipe A contains li of sp . gr . =0.9 . the pressures A and B are 1kgf/cm ² and mercury level in the differential manometer.	iquid of sp. gr. = 1.5 while the pipe B contains a liquid
2.Asst.) A u tube manometer is used to measure the pressure of	water in nine line which is in excess of atmospheric pressure
the right limb of manometer contains mercury and is open to at left limb. Determine the pressure of water in the main line, if the cm and the free surface of mercury is in level with the centre of N/m^2 , calculate the new difference in the level of mercury sket faculty	tmosphere. The contact between water and mercury is in the he difference in level of mercury in the limbs of u tube is 10 f pipe. if the pressure of water in pipe line is reduced to 9810 f.
Course objectives: 1 course Outcomes: 1	
·	Signature of faculty

Academic Year	: 2021-22		Date: 8/10/21
Semester	: I		
Name of the Program: B.T	ech II Year	Section: A	
Course/Subject: INTRODU	JCTION TO FLUID ME	ECHANICS Course Co	ode: GR20A2012
Name of the Faculty: S.	VENKAT CHARYULU	JDept.: CIV	IL ENGINEERING
Designation: ASSISTAN7	PROFESSOR		
Lesson No:8		Duration of Lesson: 11	<u>nr</u>
Lesson Title:Pressure	gauges Manometers classif	ication	
INSTRUCTIONAL/LESS	ON OBJECTIVES:		
On completion of this lesse	on the student shall be:		
1. can identify measur	e the pressure		
2. Able to list various	pressure measurement in	struments	
3. Ability to express t	he pressure measurement	instruments	
TEACHING AIDS :	White Board /Marker		
TEACHING POINTS :			
Different gauges definitions			
Types of manometer derivati	ons		
Assignment / Questions: 1. Q.)	_		
shown in the figure .2 .17 .find			
			in reservoir to center of pipe) and sure, specific gravity of mercury
is 13.6	ie neavy nquid surface in fese.	i voir to or open to ami.pres	sure, specific gravity of mercury
			ometer having n oil of sp. gr. 0.8
			f manometer.reading of left water wer level of heavy liquid is in the
left limb.	1 1	1	• 1
Course objectives: 1	Course Outcomes:	1	Signature of faculty
200220 objectives.	Course Careonies.	-	2-5

Academic Year	: 2021-22	Date: 9/10/21		
Semester	: I			
Name of the Program: B.Teo	ch II Year	Section: A		
Course/Subject: INTRODU	CTION TO FLUID M	ECHANICS Course Code: GR20A2012		
Name of the Faculty: S.V	'ENKAT CHARYUL	UDept.: CIVIL ENGINEERING		
Designation: ASSISTANT	PROFESSOR			
Lesson No:9		. Duration of Lesson: <u>1hr</u>		
Lesson Title:Differentia	al Manometers problem			
On completion of this lessor		fferential management of		
	the pressure using die measurement instrum			
-		nts using Micro manometer		
=	problems on pressure	=		
TEACHING AIDS :	White Board /Marker			
TEACHING POINTS :				
Different gauges definitio				
Types of manometer deri	vations			
=	=	be and differential manometer.		
2.Asst.) Explain about simple				
3. The right limb of the u-shaped manometer containing mercury is open to the atmosphere while the left limb is connected to a pipe which a fluid of sp. gr. 0.9 is flowing. The centre of pipe is 12 cm below the				
* *	1 0	e of fluid in the pipe if the difference of mercury level		
in the two limbs is 20 cm.	iiiio . iiiia uie pressur	of flata in the pipe if the difference of increally level		

Course objectives:

1

Course Outcomes: 1

Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090, (040) 6686 4440

ASSIGNMENT SHEET -1

Academic Year	: 2021-22	Date: 9/10/21	
Semester	: I		
Name of the Program:	B.TechII	Year:2017Section: A	
Course/Subject: INTRO	DDUCTION TO FLUID	MECHANICS	
Name of the Faculty:	S.VENKAT CHARY	ULUDept.:CIVIL ENGINEERING	
Designation :	ASSISTANT PROFESS	SOR.	
This Assignment corre	sponds to Unit No1		
Q1. List and write bri	efly about fluid propertie	es.	
,where the velocity is 1		ate is parabolic with the vertex of 20 cm from the plate velocity of gradients and sheer stress at a distance of of the fluid is 8.5 poise.	
Q3. How do you meas	sure the pressure? Discu	ss the different type of manometers.	
Q4. An invertwd u tube manometer is connected to two horizontal pipes A and B through which water is flowing. the vertica; distance between the axis of these pipes is 30cm. when an oil of specific gravity 0.8 is used as a gauage field th vertical hehits of water column in the two limbs of the converted manmeter aree foud to be same and equal to 35cm determine the difference of pressure between the pipes.			
Objective Nos.: Outcome Nos.:1	1		
Signature of HOD		Signature of faculty	
Date:		Date:	

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

TUTORIAL SHEET - 1

Academic Year	: 2021-22	Date: 21/7/21	
Semester	: I		
Name of the Program:	B.TechII	Year:2021-22Section: A	
Course/Subject: INTR	ODUCTION TO FLUID	MECHANICS	
Name of the Faculty: .	S.VENKAT CHAR	YULUDept.:CIVIL ENGINEE	ERING
Designation	: ASSISTANT PROFES	SOR.	

This Assignment corresponds to Unit No. 1

- Q1. Calculate the dynamic viscosity of an oil, which is used for lubrication between a square plate of size 0.9 m x0.9 m and an inclined plane with an angle of Inclination of 35^{0} . The weight of square plate is 400 m and its slides down
- Q2. Calculate the capillary effect in millimetres in a glass tube of 4 mm diameter , when immersed in (i) water ,and (ii) mercury . the temper rapture of liquid is 20° c and the values of the surface tension of the water and mercury at 20° c is in contact with air are 0.073575 n/m and 0.51 n/m respectively . the angle of contact for water is zero that for mercury 1.30° .take the density of water at 20° c as equal to 998 kg/m³
- Q3. The right limb of the u-shaped manometer containing mercury is open to the atmosphere while the left limb is connected to a pipe which a fluid of sp. gr.0.9 is flowing. The centre of pipe is 12 cm below the level of mercury in the right limb. find the pressure of fluid in the pipe if the difference of mercury level in the two limbs is 20 cm.
- Q4. water is flowing through two different pipes to which an inverted differential manometer having n oil of sp. gr. 0.8 is connected. the pressure head in pipe a is 2m of water, find the pressure in the pipe B of manometer.reading of left water column and right water columnto the center of pipe ares 30cm and 12cm respectively. Lower level of heavy liquid is in the left limb.

Objective Nos.: 1
Outcome Nos.: 1
Signature of HOD

Academic Year :	2021-22	Date: 9/10/21	
Semester	: I		
Name of the Program: B.Tech II	Year	Section: A	
Course/Subject: INTRODUCTIO	N TO FLUID MECHA	NICS Course Code: GR20A2012	
Name of the Faculty: S.VENK	AT CHARYULU	Dept.: CIVIL ENGINEERING	
Designation: ASSISTANT PRO	FESSOR		
Lesson No:10	Duratio	on of Lesson: 1hr	
Lesson Title: Micro Manome	eters		
INSTRUCTIONAL/LESSON OF	SJECTIVES:		
On completion of this lesson the solution 1. predict the pressure and		ter.	
2. Draw micro manometer	. And relate Reservoir	:	
3. solve the problems on mi	ero manometer. Having r	reservoir on both side assume suitable data	
TEACHING AIDS : White	Board /Marker		
TEACHING POINTS :			
Explain and draw the micro macalculate the pressure using management of the problems on micro management of the problems of th	nicro manometer.		
Assignment / Questions: 1. Q.) Explain about simple column manometer?			
2.Asst.	How do u measure pres	ssure using micro manometer	

Outcome Nos.: 1

Signature of faculty

Objective Nos.: 1

Academic Year	:	2021-22		Date: 13/10/21
Semester	:	I		
Name of the Program: B.Te	ch II Ye	ear	Section: A	
Course/Subject: INTRODU	CTION	TO FLUID MECHA	NICS Course (Code: GR20A2012
Name of the Faculty: S.	VENKA	T CHARYULU	Dept.: CI	VIL ENGINEERING
Designation: ASSISTANT	PROFI	ESSOR		
Lesson No:	11	Duratio	on of Lesson: 1	<u>hr</u>
Lesson Title: Micro M	Ianomete	ers		
INSTRUCTIONAL/LESSO	ON OBJI	ECTIVES:		
On completion of this lesso 1. Differentiate the mi		ndent shall be : nometer. And other ma	nometers	
2. compute the pressur	e in mic	ro manometer.		
TEACHING AIDS :	White E	Board /Marker		
TEACHING POINTS :				
Explain and draw the mic calculate the pressure us Problems on micro mano	sing mic			
Assignment / Questions: 1.		plain about simple colu low do u measure pres		

Signature of faculty

Objective Nos.: 1

Outcome Nos.: 1

Academic Year	: 2021-22	Date: 14/10/21
Semester	: I	
Name of the Program: B.	Tech II Year	Section: A
Course/Subject: INTROD	OUCTION TO FLUID N	MECHANICS Course Code: GR20A2012
Name of the Faculty: S	S.VENKAT CHARYUI	LUDept.: CIVIL ENGINEERING
Designation: ASSISTAN	T PROFESSOR	
Lesson No:	12	Duration of Lesson: 1hr
Lesson Title: single	column and other Manon	neters
INSTRUCTIONAL/LES	SON OBJECTIVES:	
On completion of this less 1. Explain and draw	son the student shall be a withe Differential manor	
2. compute the press	ure in Differential mand	ometer. Take 20cm son both sides.
TEACHING AIDS	: White Board /Marker	
TEACHING POINTS	:	
Explain and draw the n calculate the pressure Problems on micro man	using micro manometer	r.
Assignment / Questions:	- · · ·	nple column manometer? ure pressure using micro manometer

Outcome Nos.: 1

Objective Nos.: 1

Signature of faculty

Academic Year	: 2021-22	Date: 14/10/21	
Semester	; I		
Name of the Program: B	Tech II Year	Section: A	
Course/Subject: INTROI	DUCTION TO FLUID N	MECHANICS Course Code: GR20A2012	
Name of the Faculty:	S.VENKAT CHARYUI	LUDept.: CIVIL ENGINEERING	
Designation: ASSISTAN	NT PROFESSOR		
Lesson No:	13	. Duration of Lesson: 1hr	
Lesson Title: Singl	ecolumnn manometer		
INSTRUCTIONAL/LES	SON OBJECTIVES:		
On completion of this les	son the student shall be:	:	
1. Analyze the sing	le column manometer .		
2. Compute the pre	ssure in single column n	nanometer with one side reservoir of 1/100 time	es
TEACHING AIDS	: White Board /Marker	TEACHING POINTS :	
Explain and draw the realculate the pressure Problems on micro ma	using micro manometer	r.	
Assignment / Questions:	- · · •	nple column manometer? ure pressure using micro manometer	

Outcome Nos.: 2

Signature of faculty

Objective Nos.: 2

Academic Year	: 2021-22	Date: 23/10/21
Semester	: I	
Name of the Program: B	.Tech II Year	Section: A
Course/Subject: INTROI	DUCTION TO FLUID	MECHANICS Course Code: GR20A2012
Name of the Faculty:	S.VENKAT CHARY	ULUDept.: CIVIL ENGINEERING
Designation: ASSISTAN Lesson No:14		Duration of Lesson: 1hr
center of pressure.		n of statics kinematics and dynamic forces on plane and
INSTRUCTIONAL/LES	SON OBJECTIVES:	
O 1 - 4 ! 6 41 ! - 1		

On completion of this lesson the student shall be:

- 1. Deduce Hydrostatic forces on statics fluids
- 2. Recognize pressure force on the given shape of a plane
- 3. Ccategorise, moment of inertia of various geometrical shapes

understand distinguish TEACHING AIDS : White Board /Marker

TEACHING POINTS

Hydrostatic forces

Introduction of statics kinematics and dynamic fluids and forces on plane

- -Definition Of Center Of Pressure.
- Definition Of Total Pressure

Assignment / Questions: 1. Q.) Explain about Hydrostatic forces of statics fluids?

- 2.Asst.) Able to explain moment of inertia of various geometrical shapes
- 3. Pipe 'P' contains carbon tetra chloride of sp.gr. 1.594 under a pressure of 1.05 kgf/cm² and 'Q' contains oil of sp.gr 0.8 and having the pressure equal to 1.75 kgf/cm² and manometric fluid is mercury. The height of liquid of sp.gr. 1.574 form P to the center of Q is 2.5m. The height liquid of sp.gr. form Q to the above mercury level in left limb is 1.5m. find the difference of levels of the mercury.

Objective Nos.: 2 Outcome Nos.: 2 Signature of faculty

Academic Year	: 2021-22	Date	23/10/21
Semester	: I		
Name of the Program: B.	Гесh II Year	Section: A	
Course/Subject: INTROD	OUCTION TO FLUID	MECHANICS Course Code:	GR20A2012
Name of the Faculty: S	S.VENKAT CHARYU	JLUDept.: CIVIL E	NGINEERING
Designation: ASSISTAN	T PROFESSOR		
Lesson No:15.		Duration of Lesson: 1hr	
Lesson Title:Hydros	tatic forces on horizontal	submerged plane Derivation	
INSTRUCTIONAL/LESS	SON OBJECTIVES:		
On completion of this less	son the student shall be	:	
1. Assess Hydrostation	c forces on horizontal sub	omerged plane Derivation	
2. Predict draw the	Hydrostatic forces on ho	rizontal submerged plane.	
TEACHING AIDS	: White Board /Marke	er the	
TEACHING POINTS :	:		
Hydrostatic forces on h problems	norizontal submerged p	lane Derivation	
Assignment / Question	ns:	il submerged plane	

- 1. Q.)Derive Hydrostatic forces on horizontal submerged plane
- 2.Asst.)Define total pressure and center of pressure on horizontal submerged planes.

Objective Nos.: 2 Outcome Nos.: 2 Signature of faculty

Academic Year	: 2021-22	Date: 27/10/21
Semester	: I	
Name of the Program: B.	Tech II Year	Section: A
Course/Subject: INTROE	OUCTION TO FLUID I	MECHANICS Course Code: GR20A2012
Name of the Faculty:	S.VENKAT CHARYUI	LUDept.: CIVIL ENGINEERING
Designation: ASSISTAN	T PROFESSOR	
Lesson No:16		Duration of Lesson: <u>1hr</u>
Lesson Title:Hydros	tatic forces on Inclined sul	abmerged plane Derivation
2. Explain And Dra 3 Compute Inclin TEACHING AIDS TEACHING POINTS	son the student shall be : tic Forces On Vertical Sub	bmerged Plane Derivation Inclined Submerged Plane. blems.
Hydrostatic forces on v	rerucai submerged plane	е репуация
Assignment / Question	ne	

Assignment / Questions:

- 1. Q.)Derive Hydrostatic forces on vertical submerged plane
- 2.Asst.)Define total pressure and center of pressure on vertical submerged planes
- 3A concentric circle plate of diameter 3m with 1.5m diameter hole is immersed in water in such way that greatest and least depth below the free surface are 4m and 1.5m respectively. Determine the total pressure and center of pressure on one face of the plate

Objective Nos.: 2 Signature of faculty Outcome Nos.: 2

Academic Year	: 2021-22	Date:28/11/21
Semester	: I	
Name of the Program: B	.Tech II Year	Section: A
Course/Subject: INTROI	DUCTION TO FLUID N	MECHANICS Course Code: GR20A2012
Name of the Faculty:	S.VENKAT CHARYUI	.UDept.: CIVIL ENGINEERING
Designation: ASSISTAN	NT PROFESSOR	
Lesson No:17	Duration of Lesson: 1hr	<u>.</u>
Lesson Title:Hydrosta	tic forces on inclined subme	erged plane
INSTRUCTIONAL/LES	SON OBJECTIVES:	
1. Analyse Hydrosta	tic forces on inclined subm	erged plane Derivation
2 Compare and d	raw Hydrostatic forces on i	nclined submerged plane.
4 Examine inclined	submerged plane problems	s on circular planes, triangular plane s
TEACHING AIDS	: White Board /Marker	
TEACHING POINTS	:	
Hydrostatic forces on in-	clined submerged plane De	erivation
	tatic forces on inclined sub	merged plane essure on inclined submerged planes
Objective Nos.: 2	Outcome Nos.: 2	Signature of faculty

Academic Year	: 2021-22	Date: 2	28/11/21
Semester	: I		
Name of the Program: B.Te	ch II Year	Section: A	
Course/Subject: INTRODU	CTION TO FLUID	MECHANICS Course Code: O	GR20A2012
Name of the Faculty: S.V	VENKAT CHARYU	LUDept.: CIVIL EN	GINEERING
Designation: ASSISTANT	PROFESSOR		
Lesson No:18	I	Ouration of Lesson: 1hr	
Lesson Title:Hydrostat	ic forces on curved sub	merged plane derivation	
INSTRUCTIONAL/LESSO 1. Derive Hydrostatic		nerged plane Derivation	
•		rved submerged plane.	
	ibmerged plane problei		
TEACHING AIDS :	White Board /Marker	r	
TEACHING POINTS :			
	ved submerged plane	Derivation and various probler	ns
Assignment / Questions: 1. Q.)Derive Hydrostati 2.Asst.)Define total pres	ic forces on curved su	bmerged plane essure on curved submerged pla	nes
Objective Nos.: 2	Outcome Nos.: 2	Signature of f	faculty

Academic Year	: 2021-22	Date 30/10/21
Semester	: I	
Name of the Program	n: B.Tech II Year	Section: A
Course/Subject: INT	RODUCTION TO FLUID N	MECHANICS Course Code: GR20A2012
Name of the Faculty:	S.VENKAT CHARYUI	LUDept.: CIVIL ENGINEERING
Designation: ASSIS	TANT PROFESSOR	
Lesson No:	19	Duration of Lesson: 1hr
Lesson Title:Hy	ydrostatic forces on horizontal s	ubmerged plane problems
INSTRUCTIONAL/	LESSON OBJECTIVES:	
On completion of thi	s lesson the student shall be:	
1 Calculate H	ydrostatic forces on horizontal	submerged plane on curved plane 3m from FS
2. Enumerate ,F	Hydrostatic forces on horizontal	submerged plane 7m from FS
EACHING AIDS	: White Board / Marker	
TEACHING POINTS	S :	
Hydrostatic forces	on horizontal submerged pla	ne problems
Assignment / Out	estions:	

- 1. Q. Determine the total pressure on circular plate of diameter 1.5 m which is placed vertically in water in such a way that a centre of the plate is 3m below the free surface of water . find the centre of pressure
- 2.Asst.)Define total pressure and center of pressure on horizontal submerged planes.

Objective Nos.: 2 Outcome Nos.: 2 Signature of faculty

Academic Year	: 2021-22	Date	2: 31/10/21
Semester	: I		
Name of the Program: B.	Tech II Year	Section: A	
Course/Subject: INTROD	OUCTION TO FLUID	MECHANICS Course Code:	GR20A2012
Name of the Faculty: S	S.VENKAT CHARYU	JLUDept.: CIVIL E	NGINEERING
Designation: ASSISTAN Lesson No:20	T PROFESSOR	Duration of Lesson: 1hr	
Lesson Title:Hydros	tatic forces on Inclined s	submerged plane Derivation	
INSTRUCTIONAL/LES	SON OBJECTIVES:		
On completion of this les	son the student shall be	e:	
1. Analyse Hydrosta	tic forces on veridical su	bmerged plane Derivation	
2. Discuss and draw	Hydrostatic forces on in	nclined submerged plane. Of 45 de	egree
6 Evaluate inclined	submerged plane proble	em from 30 degree with horizon	tal
TEACHING AIDS	: White Board /Marke	er	
TEACHING POINTS	:		
Hydrostatic forces on ver	tical submerged plane p	problems on circular, triangular	and trapezoidal
Assignment / Questio	ns: atic forces on vertical sub	omerged plane	

Objective Nos.: 2 Outcome Nos.: 2 Signature of faculty

2.Asst.)Define total pressure and center of pressure on vertical submerged planes

Academic Year	: 2021-22		Date: 03/11/21
Semester	: I		
Name of the Program: B.Tec	h II Year	Section: A	
Course/Subject: FLU	ID MECHANICS	Course Code:	GR20A2012
Name of the Faculty: S.V	ENKAT CHARYUI	LUDept.: CI	VIL ENGINEERING
Designation: ASSISTANT	PROFESSOR		
Lesson No:21	D	Ouration of Lesson: 1hr	······
Lesson Title:Hydrostatic	e forces on inclined sub	omerged plane	
INSTRUCTIONAL/LESSON	N OBJECTIVES:		
 Analyse Hydrostatic Effect on inclined plan 		merged plane Derivation	

TEACHING AIDS : White Board / Marker

TEACHING POINTS :

Hydrostatic forces on inclined submerged plane derivation

Hydrostatic forces on inclined submerged plane Problems on circular, triangular and trapezoidal Hydrostatic forces on inclined submerged plane model application

Assignment / Questions:

- 1. Q.)Derive Hydrostatic forces on inclined submerged plane
- 2.Asst.)Define total pressure and center of pressure on inclined submerged planes

Objective Nos.: 2 Outcome Nos.:2 Signature of faculty

Academic Year :	2021-22	Date: 4/11/21
Semester	: I	
Name of the Program: B.Tech I	[Year	Section: A
Course/Subject: FLUID	MECHANICS 0	Course Code: GR20A2012
Name of the Faculty: S.VEN	KAT CHARYULU	Dept.: CIVIL ENGINEERING
Designation: ASSISTANT PR	OFESSOR	
Lesson No:22	Duration of	f Lesson: 1hr
Lesson Title:Hydrostatic fo	rces on inclined submerged pl	ane
INSTRUCTIONAL/LESSON O	DBJECTIVES:	
 enumerate, Hydrostatic fo Able to compute inclined 	•	-
TEACHING AIDS : Whi	te Board /Marker	
TEACHING POINTS :		

Assignment / Questions:

1. Q.)Derive Hydrostatic forces on inclined submerged plane

Hydrostatic forces on inclined submerged plane derivation

2.Asst.)Define total pressure and center of pressure on inclined submerged planes

Hydrostatic forces on inclined submerged plane Problems circular, triangular and trapezoidal

Objective Nos.: 2 Outcome Nos.: 2 Signature of faculty

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090, (040) 6686 4440

ASSIGNMENT SHEET -2

Academic Year	: 2021-22	Date 4/11/21	
Semester	: I		
Name of the Program	B.TechII	::2021-22Section	on: A
Course/Subject: INTR	ODUCTION TO FLUID MECI	HANICS	
Name of the Faculty:	S.VENKAT CHARYULU	Dept.:CIVIL ENC	GINEERING
Designation	: ASSISTANT PROFESSOR.		
This Assignment corr	esponds to Unit No. / Lesson2	2	
This Assignment corr	esponds to Unit No. / Lesson l	JNIT-II	
Q1. Define the expre	ssion of total pressure and center	pressure.	
Q2 Obtain the Hydros	tatic forces on vertical submerge	d planes.	
the total pressure a	and position of centre of pressure les with water surface, (B) 2.5 m	on the plane surface when its	s upper edge is
Q4 The find force on 4m and	the disc in vertical si of tank hav	ring 3m diameter . head on ho	orizontaldiameter is
Find torque applied to	keep the disc in vertical position	1.	
Objective Nos.: 2	Outcome Nos.: 2	Signature of fac	ulty

Objective Nos.: 2

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

TUTORIAL SHEET - 2

Academic Year	: 2021-22	Date: 4/11/21
Semester	: I	
Name of the Program: B.Tec	hIIYear:	.2021-22Section: A
Course/Subject: INTRO	DDUCTION TO FLUID ME	CHANICS
Name of the Faculty:S.	VENKAT CHARYULU	Dept.:CIVIL ENGINEERING
Designation : ASS	ISTANT PROFESSOR.	
This Assignment correspond	s to Unit No. 2	
which can rotate about required to maintain the disc diameter is 4 m Q2 Write down moment of it Q3 A square aperture in the by a plane hinged along one the tank contains a liquid of scalculate the thrust exerted o Q4 A cubical tank has sides of the square about the square and the square are square and the square are square as the square are sq	a horizontal diameter. calculation the equilibrium in the vertical, area of diffraction geometrical side of a tank has one of the upper sides of aperture specific gravity 1.15. the central the plate by the liquid and pof 1.5 m. it contains water for iffic gravity 0.9 calculate for of	a tank is closed by a disk of 3 m diameter ate: (i)the force on disc, and (ii) the torque tical position of water above the horizontal metrical planes. The diagonal vertical and is completely covered at the diagonals of the aperture ar 2m long and tree of aperture is 1.5 m below the free surface are ossition of its centre of pressure. The lower 0.6 m depth at the upper remaining one vertical side of the tank: (i)total pressure
Objective Nos.: 2		
Outcome Nos : 2		

Outcome Nos.: 2

Signature of faculty

Academic Year	:	2021-22	Date: 4/11/21
Semester	: I		
Name of the Program: B.Te	ch II Year		Section: A
Course/Subject: INTRODU	CTION TO	FLUID MECH	ANICS Course Code: GR20A2012
Name of the Faculty: S.	VENKAT (CHARYULU	Dept.: CIVIL ENGINEERING
Designation: ASSISTANT	PROFESS	OR	
Lesson No:23		Dı	ration of Lesson: 1hr
Lesson Title:FLUID K	INEMATIC	CS Description of	fluid flow
INSTRUCTIONAL/LESSO	N OBJECT	TIVES:	
On completion of this lesson 1. Write the types of the completion of this lesson 2. Classify Langrangion 3. Examine fluids velocity that the completion of this lesson 4. Able to define fluids	fluids ous, Euler fl ocity and acc	uid motion celeration.	
TEACHING AIDS :	White Boar	rd /Marker	
TEACHING POINTS: Types of fluid description Langrangious, Euler fluid Fluids velocity and accele Fluid at space co ordinate	l motion eration.		
Assignment / Questions: 1.		• 1	escription egious, Euler fluid motion

Outcome Nos.: 3

Signature of faculty

Objective Nos.: 3

Academic Y	Year	:	2021-22		Date: 06/11/21
Semester		:	I		
Name of the	e Program: B.Teo	ch II Ye	ar	Section: A	
Course/Sub	ject: INTRODUC	CTION	TO FLUID MECHAN	ICS Course C	ode: GR20A2012
Name of the	e Faculty: S.V	ENKA	Γ CHARYULU	Dept.: CIV	IL ENGINEERING
Designation	n: ASSISTANT	PROFE	ESSOR		
Lesson No:	24	• • • • • • • • • •	Duration o	f Lesson: 1hr.	
Lesson Titl	e: Stream lir	ne, path l	ine and streak lines, strea	m tube. problems	s1,2 ,6 &4,6,5
INSTRUCT	ΓΙΟΝΑL/LESSO	N OBJE	ECTIVES:		
On complet	tion of this lesson	the stu	dent shall be:		
1. Clas	ssify the types of	fluid li	nes		
2. Diff	erentiate the stre	am tub	e Ability to express t	he streak line.	
4 Pred	dict the path lines	S			
On complet	tion of this lesson	the stu	dent shall be :		
TEACHING	G AIDS : Y	White B	oard /Marker		
TEACHING	G POINTS :				
	f fliud lines, the sees between the		ube, streak line, path l fluid lines	ine	
_	t / Questions:	o typos	of flind lines		
	v do u identify th do you understar	• •	ream tube, streak line?		
Objective N	Jos.: 3	Outc	ome Nos.: 3	Signat	ure of faculty

Academic Year	: 2021-22	Date: 06/11/21
Semester	: I	
Name of the Program:	B.Tech II Year	Section: A
Course/Subject: INTRO	DDUCTION TO FLUID	MECHANICS Course Code: GR20A2012
Name of the Faculty:	. S.VENKAT CHARYU	LUDept.: CIVIL ENGINEERING
Designation: ASSISTA	ANT PROFESSOR	
Lesson No:	25 I	Ouration of Lesson: 1hr
Lesson Title: Classifica irrotational flows	ntion of flows Steady, unstea	dy uniform non-uniform, laminar, turbulent, rotational and
1. Elaborate the l	esson the student shall be	
On completion of this l	esson the student shall be	:
TEACHING AIDS	: White Board /Market	r
TEACHING POINTS	:	
types of fluids,lamin , unsteady uniform n	ar flow, turbulent ,rotation on-uniform flows	nal flows ,irrigational
pipe is bent by 135 ⁰ (th	at is the change from initi	s flowing in a pipe having a diameter of 500 mm. if the al to final direction is 135), find the magnitude and re of water flowing is 49.24 n/cm ²
Objective Nos.: 3	Outcome Nos.: 3	Signature of faculty

Academic Year	: 2021-22	Date: 10/11/21
Semester	: I	
Name of the Program: B.	Гесh II Year	Section: A
Course/Subject: INTROD	OUCTION TO FLUID M	IECHANICS Course Code: GR20A2012
Name of the Faculty: S	S.VENKAT CHARYUL	UDept.: CIVIL ENGINEERING
Designation: ASSISTAN	T PROFESSOR	
Lesson No:26	Dī	uration of Lesson: 1hr
Lesson Title: Steady, unst	eady problems	
INSTRUCTIONAL/LESS	SON OBJECTIVES:	
On completion of this less 1. Classify the study and 2.Compare the turbulent	l unsteady	
TEACHING AIDS TEACHING POINTS	: White Board /Marker	
Steady, unsteady flow	's conditions.	
2Q The diameters of a pip	pe at the sections 1 and 2	eady flow and unsteady flow 2,6&4, are 10 cm and 15 cm respectively. Find the discharge through the pipe at section 1 is 5m/s determine
Objective Nos.: 3	Outcome Nos.: 3	Signature of faculty

Academic Year	: 2021-22	Ι	Date: 11/11/21			
Semester	: I					
Name of the Program: B.T	Tech II Year	Section: A				
Course/Subject INTRODU	UCTION TO FLUID	MECHANICS Course Cod	le: GR20A2012			
Name of the Faculty: S	Name of the Faculty: S.VENKAT CHARYULUDept.: CIVIL ENGINEERING					
Designation: ASSISTAN	T PROFESSOR					
Lesson No:27.		Duration of Lesson: 1hr				
Lesson Title: rotational and	l irrotational flows					
 INSTRUCTIONAL/LESS	SON OBJECTIVES:					
On completion of this less	on the student shall be	e:				
 How to identify the types of fluids mention practical application What Do u understand by the rotational flow? explain Express the iirotational flows application 						
4. Differentiate the in	rotational flows and ro	tational flow				
TEACHING AIDS : White Board /Marker TEACHING POINTS : rotational and irrotional flows Definitions and conditional problems						
Assignment / Questions: 1,2&4, 2.Asst.) The velocity vector acceleration of a fluid part	or in a fluid flow is gi	•	and irrigational flows? Find the velocity and			

Signature of faculty

Outcome Nos.: 3

Objective Nos.: 3

Academic Year	:	2021-22		Date: 13/11/21		
Semester	:	I				
Name of the Program: B.Tecl	n II Ye	ar	Section: A			
Course/Subject: INTRODUC	TION	TO FLUID MECHAN	VICS Course (Code: GR20A2012		
Name of the Faculty: S.VI Designation: ASSISTANT 1			Dept.: CIV	VIL ENGINEERING		
Lesson Title: Equation of cont	Lesson No:					
On completion of this lesson the student shall be: 1. Derive one, two and three dimensional flows. 2. Analyze the Equation of continuity 3. Relate different forms of Equation of continuity ?						
TEACHING AIDS : White Board /Marker TEACHING POINTS : Equation of continuity one, dimensional flows. two dimensional flows. three dimensional flows.						
Assignment / Questions: 1. Q.) Derive Equation of continuity for one, two and three dimensional flow2,6&4,6, 2.Asst.) The following cases represent the two velocity components, determine the third component of velocity such that they satisfy the continuity equat.ion u-2x+2y v=2x-2y						
Objective Nos.: 3	Outc	ome Nos.: 3	Signat	ture of faculty		

Academic Year	:	2021-22	Date: 13/11/21
Semester	:	I	
Name of the Prog	gram: B.Tech II Yea	nr	Section: A
Course/Subject:	INTRODUCTION	TO FLUID MECHA	NICS Course Code: GR20A2012
Name of the Fact	ulty: S.VENKAT	CHARYULU	Dept.: CIVIL ENGINEERING
Designation: AS	SSISTANT PROFE	SSOR	
Lesson No:	29	Duration o	f Lesson: 1hr
Lesson Title: Equ	nation of continuity for	or one, two and three dim	nensional flows.
INSTRUCTION	AL/LESSON OBJE	CTIVES:	
1. Mention		dent shall be: dimensional flows. In tion of continuity flow	
TEACHING AII TEACHING PO		oard /Marker	
	3D Continuity and v	various forms	
	estions: 1. Q.) The ents at the point (4,		etion is given by $\emptyset = 5(x^2-y^2)$ Calculate the
2.Asst.) What is	control volume? De	fine circulation	
Objective Nos.: 3	3 Outco	ome Nos.: 3	Signature of faculty

Academic Year	: 2021-22	Date: 17/11/21
Semester	: I	
Name of the Prog	ram: B.Tech II Year	Section: A
Course/Subject:	INTRODUCTION TO FLUID MI	ECHANICS Course Code: GR20A2012
Name of the Facu	lty: S.VENKAT CHARYULU	Dept.: CIVIL ENGINEERING
Designation: ASS	SISTANT PROFESSOR	
Lesson No:	29	tion of Lesson: 1hr
Lesson Title: S	Stream ,velocity potential functn, flown	et analysis problems
INSTRUCTIONA	AL/LESSON OBJECTIVES:	
On completion of	this lesson the student shall be:	
1. classify the Str	eam, velocity potential function fluid	flows
2. Recognize to so	olve problems on Stream, velocity po	tential function fluid flows
3. Explain Stream	, velocity potential function fluid flow	ws
4. Summarize th	e Stream ,velocity potential function	fluid flows
TEACHING AID	S : White Board / Marker	
Stream ,velocit	NTS: y potential function fluid flows flo	ow net
•	estions:. 1Q.) explain Laplace equation care equation for potential function care.	

Outcome Nos.: 3

Signature of faculty

Objective Nos.: 3

Academic Year	: 2021-22	Date: 18/11/21			
Semester	: I				
Name of the Programs	: B.Tech II Year	Section: A			
Course/Subject: INT	Course/Subject: INTRODUCTION TO FLUID MECHANICS Course Code: GR20A2012				
Name of the Faculty:	S.VENKAT CHARYUL	.UDept.: CIVIL ENGINEERING			
Designation: ASSIST	CANT PROFESSOR				
Lesson No:	.30 Γ	Ouration of Lesson: <u>1hr</u>			
Lesson Title: FLU	ID DYNAMICS: Surface and	body forces problems			
INSTRUCTIONAL/L	ESSON OBJECTIVES:				
On completion of this	lesson the student shall be:				
1. choose, Surface and body forces and discuss					
2. classify to Surface and body forces with examples					
4. Illustrate problems on the Surface and body forces					
TEACHING AIDS : White Board / Marker					
TEACHING POINTS : FLUID DYNAMICS: Surface and body forces problems discussion and illustrations					
FLUID DYNAMIC	S: Surface and body forces pr	oblems discussion and illustrations			
A:	10)				
Assignment / Question	ns:. 1Q.) explain the differe	nt body forces Y I,			

1Q.) Determine the velocity at the point p(4,5). Determine also the value of stream function \(\Perp \) at point p. the stream of function for a two dimensional flow is given by $\Psi = 2xy$, calculate the velocity at the point (2,3) find the velocity potential function \emptyset .

Objective Nos.: 3 Outcome Nos.:3 Signature of faculty

Academic Year Semester	: 2021-22 : I	Da	ate: 26/11/21
Name of the Program: B.Tec	h II Year	Section: A	
Course/Subject: INTRODU	CTION TO FLUID	D MECHANICS Course C	ode: GR20A2012
Name of the Faculty: S.V	ENKAT CHARYU	ULU cDept.: CIVIL EN	IGINEERING
Designation: ASSISTANT	PROFESSOR		
Lesson No:31		Duration of Lesson: <u>1hr</u>	
Lesson Title: Euler's and EINSTRUCTIONAL/LESSO	*	for flow along a stream line	
On completion of this lesson	the student shall be	e:	
1. Define Bernoulli's equati	ons for flow along a	stream line	
2. What is Euler's equation	ns for flow along a str	ream line ?	
3. classify the practical app	lication on Euler's	and Bernoulli's equations for flo	w along a stream line
4. knowledge of solving pro	oblems Euler's and	Bernoulli's equations for flow al	ong a stream line
TEACHING AIDS : V	Vhite Board /Marke	er	
TEACHING POINTS :			
Euler's and Bernoulli's equat Problems	ions for flow along a	stream line derivation Definiti	on of Energy equation
Assignment / Questions:. 1Q 1Q.) define type of energy equ		Bernoulli's equations for flow a	long a stream line_Y1,
Objective Nos.: 3	Outcome Nos.: 3	Signature	of faculty

Academic Year Semester	: :	2021-22 I		Date: 26/11/21	
Name of the Progra	m: B.Tech II Ye	ar	Section: A	A	
Course/Subject:	INTRODUCTI	ON TO FLUI	O MECHANICS	. Course Code: GR20A2012	
Name of the Faculty	y: S.VENKA	T CHARYULI	UDept.	: CIVIL ENGINEERING	
Designation: ASSI	STANT PROFE	ESSOR			
Lesson No:	32	Du	ration of Lesson:	<u>1hr</u>	
Lesson Title: Ne	rvier stokes equat	ions (Explanatio	n) problems		
INSTRUCTIONAL	/LESSON OBJ	ECTIVES:			
On completion of th	nis lesson the stu	dent shall be:			
	 Discuss about Navier stokes equations on real applications illustrate Navier stokes equations with Example 				
TEACHING AIDS : White Board / Marker TEACHING POINTS :					
Navier stokes equations (Explanation problems and applications					
Assignment / Questions:. 1Q.) explain the Navier stokes equations (Explanation) problems Y1,					
Objective Nos.: 3	Outc	ome Nos.: 3	S	ignature of faculty	

Academic Year	: 2021-22	Date: 1/12/21
semester : : I		
Name of the Program:	B.Tech II Year	Section: A
Course/Subject: GR20A2012		TO FLUID MECHANICS Course Code
Name of the Faculty:	S.VENKAT CHAR	YULUDept.: CIVIL ENGINEERING
Designation: ASSIST	ANT PROFESSOR	
Lesson No:	.33	Duration of Lesson: <u>1hr</u>
Lesson Title: Mome	entum equation and its ap	plication
INSTRUCTIONAL/L	ESSON OBJECTIVES	<u>:</u>
On completion of this	lesson the student shall	be:
1. Momentum equation	on and its application	
2. The Momentum eq	quation and its application	1
3. Explain Momentum	m equation and its applica	ation
4. Enumarate on M	Momentum equation and it	s application especially 135 ° pipe bend
TEACHING AIDS TEACHING POINTS	: White Board /Mar	ker
Momentum equation Derivation Momentum application of Momen	•	plication
Assignment / Question	ns:. 1Q.) Explain the Mo	mentum equation and its application Y1,

Outcome Nos.: 3

Signature of faculty

Objective Nos.: 3

Academic Year	: 2021-22	Date: 8/12/21		
Semester	: I			
Name of the Program: B.Tech	II Year	Section: A		
Course/Subject: INTR GR20A2012	ODUCTION T	O FLUID MECHANICS Course Code:		
Name of the Faculty: S.VE	NKAT CHARY	ULUDept.: CIVIL ENGINEERING		
Designation: ASSISTANT Pl	ROFESSOR			
Lesson No:35		Duration of Lesson: 1hr		
Lesson Title: <u>INSTRUCTION</u>	AL/LESSON OF	BJECTIVES:		
On completion of this lesson th	ne student shall b	e:		
1. Forces on pipe bend problems				
2. Describe the forces on pipe	bend problems			
3. Explain forces on pipe bend	problems			
4. knowledge of solving proble	ems forces on pipe	e bend problems		
TEACHING AIDS: White Board / Marker TEACHING POINTS: forces on pipe bend problems Resolving the forces on L shape bend V shape bend, 135° shape bend				
	nected in a pipe ling find the force exer	ne, the diameter at the inlet and outlet of the bend being red by water on bend if internal pressure at inlet to bend is		

Outcome Nos.: 3

Signature of faculty

Objective Nos.: 3

Academic Year	: 2021-22	Date: 9/12/20	21
Semester	: I		
Name of the Program: B.Te	ech II Year	Section: A	
Course/Subject: IN GR20A2012	NTRODUCTION '	TO FLUID MECHANICS Cour	se Code
Name of the Faculty: S.	VENKAT CHAR	YULUDept.: CIVIL ENGINER	ERING
Designation: ASSISTANT	PROFESSOR		
Lesson No:36 Lesson Title: Problems on v		Duration of Lesson: <u>1hr</u>	

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be:

- 1. identify Equation of continuity problems
- 2. describe the Stream , velocity potential function, flow net analysis problems
- 3. explain Euler's and Bernoulli's equations for flow along a stream line
- 4. Evaluate problems on Navier stokes equations (Explanation) problems

TEACHING AIDS : White Board / Marker

TEACHING POINTS

Equation of continuity problems
Stream ,velocity potential functn, flownet analysis problems
Surface and body forces problems
Euler's and Bernoulli's equations for flow along a stream line
Navier stokes equations (Explanation) problems

Assignment / Questions:. 1Q.) The stream function for a 2-D flow is given by Ψ =2xy. Calculate velocity at a point (2, 3). Find the velocity potential function φ ,

2Q.) A 135° reducing bend is connected in a pipe line, the dia at the inlet and outlet of the bend being 700mm and 30mm respectively, find the force exerted by water on bend if internal pressure at inlet to bend is 10.829N/cm^2 and rate of flow of water is 900 lit/sec.,

Objective Nos.: 3 Outcome Nos.: 3 Signature of faculty

Academic Year	: 2021-22	Date: 9/12/21
Semester	: I	
Name of the Program: B.	Tech II Year	Section: A
Course/Subject: INTRO	DUCTION TO FLUID M	MECHANICS Course Code: GR20A2012
Name of the Faculty:	S.VENKAT CHARYUL	UDept.: CIVIL ENGINEERING
Designation: ASSISTAN	NT PROFESSOR	
Lesson No:37	Dı	aration of Lesson: <u>1hr</u>
Lesson Title: Boundar INSTRUCTIONAL/LES		Solutions of Navier Stoke's Equations
On completion of this les	sson the student shall be:	
1. Define Boundary layer	er theory flows	
2. Describe the Boundar	y layer theory on flat plate	
3. compute problems o	n Boundary layer theory M	omentum thickness
TEACHING POINTS	: White Board / Marker :	
Boundary layer theory c Boundary layer theory	*	
Assignment / Questions:. 1Q.) explain Boundary lay		er theory concept Boundary layer theory separation
Objective Nos.: 3	Outcome Nos.: 3	Signature of faculty

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090, (040) 6686 4440

ASSIGNMENT SHEET -3

Academic Year	: 2021-22	Date:: 9/	12/21
Semester	: I		
Name of the Program: B	.TechII	Year:2021-22	Section: A/B
Course/Subject:FL	UID MECHANICS		
Name of the Faculty:	S.VENKAT CHAR	YULUDept.:	.CIVIL ENGINEERING
Designation :	ASSISTANT PROFES	SOR.	
This Assignment corresp	oonds to Unit No -III		
Q1. Write different types	s of flows. How to iden	tify the type of flow.?	
Q2. Determine the velocity potential fur	• • • • • • • • • • • • • • • • • • • •		lue stream function at point p . $\theta = x(2y-1)$
Q3 Derive the equation of	of Euler for the stream l	line.	
Q4 A 30 cm diameter pipaverage velocity in 30cm Velocity in 15cm dia if	n diameter pipe is 2.5 m/	/s. find the discharge int	neter 20cm and 15cm. if the his pipe. Determine the
Objective Nos.: 3, 5			
Outcome Nos.: 3,2			

Signature of faculty

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

TUTORIAL SHEET - 3

Academic Year	: 2021-22	Date: 9/12/21	
Semester	: I		
Name of the Program: B.Tech	IIYe	ar:2017Se	ection: A/B
Course/Subject:FLUID N	MECHANICS		
Name of the Faculty:S.V	ENKAT CHARYULI	JDept.:CIVI	L ENGINEERING
Designation : ASSIS This Assignment corresponds t	STANT PROFESSOR. to Unit No. 3		
Q1. 250 l/s of water is flowing is the change from initial to fin the bend . the pressure of water	al direction is 135), fi	nd the magnitude and di	
Q2 Derive Bernoulli's equitation	on for stream line		
Q3 A horizontal venturimeter venturimeter was the flow of water .the 20 cm of mercury determine the	reading of differential	manometer connected	
Q4 The velocity vector in a flu acceleration of a fluid particle	· ·	$V=5x^3 i-11x^2 yz+3tk$	Find the velocity and
Objective Nos.: 3			
Outcome Nos.: 3			

Signature of faculty

Academic Year	: 2021-22	Date 9/12/21
Semester	: I	
Name of the Program: B	Tech II Year	Section: A
Course/Subject: INTRO	DUCTION TO FLUID	MECHANICS Course Code: GR20A2012
Name of the Faculty:	S.VENKAT CHARYU	JLUDept.: CIVIL ENGINEERING
Designation: ASSISTA	NT PROFESSOR	
Lesson No:38	3	Duration of Lesson: <u>1hr</u>
Lesson Title: Boundar INSTRUCTIONAL/LES	• •	l contribution problems
On completion of this les	sson the student shall be	::
1. identify Prandtl contr	ibution problems	
2. describe the Bounda	ry layer - concepts, Prande	tl contribution problems
3. explain Boundary layer	er - concepts, Prandtl contr	ribution problems
4. solving problems Boo	undary layer - concepts, Pr	randtl contribution problems
TEACHING AIDS TEACHING POINTS	: White Board /Marker	r
Boundary layer - concept mixed B.L, Boundary layer theory s		roblems ,shearstress, velocity distribution ,
Assignment / Questions:	. 1Q.) Boundary layer - co	oncepts, Prandtl contribution

Objective Nos.: 4 Outcome Nos.: 4 Signature of faculty

1Q.) derive the momentum thickness, boundary layer thickness

Academic Year	: 2021-22		Date: 15/12/21
Semester	: I		
Name of the Program: B	.Tech II Year	Section	on: A
Course/Subject: INTR	ODUCTION TO FLUI	D MECHANICS	Course Code: GR20A2012
Name of the Faculty:	S.VENKAT CHARYU	JLUD	ept.: CIVIL ENGINEERING
Designation: ASSISTAL Lesson No:39	NT PROFESSOR	Duration of Lesso	on: <u>1hr</u>
Lesson Title: Charact INSTRUCTIONAL/LES		er along a thin fla	t plate problems
On completion of this le	sson the student shall be	2 :	
1. Differentiate Charac	teristics of boundary la	yer along thin flat	plate problems
2. describe the Characte	eristics of boundary sep	aration	
3. Ability to explain Cha	racteristics of boundary	layer along thin	flat plate problems
4. knowledge of solving	problems Characteristic	cs of boundary lay	ver along a thin flat plate problems
	: White Board /Marke : ar boundary layer along a lent and transition bounda	thin flat plate prob	
Assignment / Questions: 1Q.) Characteristics of tur	- /	•	ayer along a thin flat plate
Objective Nos.: 4	Outcome Nos.: 4	ı	Signature of faculty

Academic Year	: 2021-22	Date: 16/12/21
Semester	: I/II	
Name of the Program: B.	TechY	ear:2016 Section: A
Course/Subject: INT	RODUCTION TO FLUID MEG	CHANICS Course Code: GR20A2012
Name of the Faculty:	S.VENKAT CHARYULU	Dept.: CIVIL ENGINEERING
Designation: ASSISTAN	NT PROFESSOR	
Lesson No:40	Duration	of Lesson: <u>1hr</u>
Lesson Title: Approxi	mate Solutions of Navier Stoke	's Equations
INSTRUCTIONAL/LES	SSON OBJECTIVES:	
On completion of this les	son the student shall be:	
1. Classify Approximate	e Solutions of Navier Stoke's Ed	quations
2. Llist the Approximate	e Solutions of Navier Stoke's E	quations
3. Discuss and solution of	of problems on Approximate So	lutions of Navier Stoke's Equations
TEACHING AIDS TEACHING POINTS	: White Board /Marker :	
Approximate Solution	s of Navier Stoke's Equations va	arious application
Assignment / Questions:.application	1Q.) explain about Approximate	Solutions of Navier Stoke's Equations various
Objective Nos.: 4	Outcome Nos.: 4	Signature of faculty

Academic Year :	2021-22	Date: 18/12/21
Semester	: I	
Name of the Program: B.Tech II	Year	Section: A
Course/Subject: INTRODUC	CTION TO FLUID MEC	CHANICS Course Code: GR20A2012
Name of the Faculty: S.VENI	KAT CHARYULU	Dept.: CIVIL ENGINEERING
Designation: ASSISTANT PRO	OFESSOR	
Lesson No:41	Duration of	Lesson: 1hr
Lesson Title: Laminar and turb		leviations), problems
1 Examine, boundary layer thi 2. explain Boundary layer - c 3. Compute problems on boun TEACHING AIDS : White	concepts, displacement the dary layer along a thin fla	ickness
TEACHING POINTS :		
Characteristics of laminar bounds Boundary layer - concepts, dis Characteristics of turbulent bour Characteristics of transition bour Characteristics of laminar sub lay	splacement thickness ndary layer along a thin flat ndary layer along a thin flat	plate plate

Assignment / Questions: 1Q.) Find momentum and displacement thickness for the following $\frac{u}{U} = 2\eta - 2\eta^3 + \eta^4$

Objective Nos.: 4 Outcome Nos.: 4 Signature of faculty

Academic Year	: 2021-22	Date: 22/12/21
Semester	: I	
Name of the Program	: B.Tech II Year	Section: A
Course/Subject: INTR	ODUCTION TO FLUID	MECHANICS Course Code: GR20A2012
Name of the Faculty: S.	VENKAT CHARYULU.	Dept.: CIVIL ENGINEERING
Designation: ASSISTANT	PROFESSOR	
Lesson No:42	Durat	ion of Lesson: 1hr
Lesson Title: BL in trans		of BL, flow around submerged problems
On completion of this lesson 1. Discuss BL in transition 2. Describe the control of I 3. Compute Energy thick 4. solve problems Compu	and separation BL ness Boundary layer	
TEACHING AIDS : TEACHING POINTS :	White Board /Marker	
Boundary layer - concep control of BL, flow aroun		nergy thickness BL in separation
Assignment / Questions:. 1	Q.) what is control of BL, B	L in separation, BL in transition
Objective Nos.: 4	Outcome Nos.: 4	Signature of faculty

Academic Year	: 2021-22	Date: 16/12/21	
Semester	: I		
Name of the Program	: B.Tech II Year	Section: A	
Course/Subject: INTRO	ODUCTION TO FLUID	MECHANICS Course Code: GR20A201	2
Name of the Faculty: S.	VENKAT CHARYULU	Dept.: CIVIL ENGINEERING	
Designation: ASSISTANT	PROFESSOR		
Lesson No:43	Durati	on of Lesson: 1hr	
Lesson Title: Drag and I INSTRUCTIONAL/LESSO	•	et. Problems	
On completion of this lesso	on the student shall be abl	e to	
1. Analyse Drag and Lift	forces		
2. Distinguish the Drag an	d Lift forces- Magnus ef	fect	
3. Explain Drag and Lift fo	orces- Magnus effect		
4 Evaluate problems on I	Orag and Lift forces- Ma	gnus effect	
TEACHING AIDS : TEACHING POINTS :	White Board /Marker		
Drag forces- stream line		iction	
Lift forces- Magnus effect			
Drag and Lift forces- Ma	ignus effect		

Assignment / Questions:. 1Q.) explain the drag forces of fluid past of cylinder 1Q.) explain the drag forces of fluid past of sphere

Objective Nos.: 4 Outcome Nos.: 4 Signature of faculty

Academic Year	:	2021-22		Date: 18/12/21
Semester	:	I		
Name of the Program: B.Te	ech II Ye	ar	Section	: A
Course/Subject: INTROD	UCTIO	N TO FLUID MI	ECHANICS	Course Code: GR20A2012
Name of the Faculty: S.	VENKA:	Γ CHARYULU	Dej	pt.: CIVIL ENGINEERING
Designation: ASSISTANT	PROFE	SSOR		
Lesson No:44		Dura	tion of Lesson	: <u>1hr</u>
Lesson Title: laminar & INSTRUCTIONAL/LESSO			experiment cha	racteristics of laminar turbulent flows.
On completion of this lesso	n the stu	dent shall be able	to	
1. Identify laminar and tur	bulent fl	OW		
2. Analyse the laminar an	d turbule	nt flow experime	ent	
3. Compare laminar and to	ırbulent f	low experiment		
4. can compute problems	on lamii	nar and turbulent	flow	
TEACHING AIDS : TEACHING POINTS :	White Bo	oard /Marker		
laminar and turbulent flo laminar and turbulent flo laminar and turbulent flo	w theory			
Assignment / Questions:. 10 1Q.) explain about laminar			urbulent flow	experiment?

Signature of faculty

Objective Nos.: 1

Outcome Nos.: 4

Academic Year	: 2021-22	Date: 22/12/2	1
Semester	: I		
Name of the Program: B.	Tech II Year	Section: A	
Course/Subject: GR20A2012	INTRODUCTION TO	O FLUID MECHANICS Cour	se Code:
Name of the Faculty:	S.VENKAT CHARY	ULUDept.: CIVIL ENGINEE	ERING
Designation: ASSISTAN	NT PROFESSOR		
Lesson No:45		Duration of Lesson: 1hr	
Lesson Title: Flow be	tween Plates Flow thro	ough long tubes	
INCEDITORIONIAL /LEG	CON ODIECTIVE		

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student will

- 1. Compare Flow between parallel plate Plates
- 2. Differentiate the Flow between one plate fixed and one plate move
- 3. Explain Flow through long tubes
- 4. solve problems Flow through long tubes

TEACHING AIDS : White Board / Marker

TEACHING POINTS

Flow between parallel plate Plates pressure drop, shear stress, velocity distribution Flow between one plate fixed and one plate move

Flow through long tubes pressure drop, shear stress, velcocity distribution

Assignment / Questions:. 1Q.) Derive expression of pressure drop Flow between parallel plate Plates 1Q.) Derive Flow through long tubes pressure drop, shear stress, velcocity distribution

Objective Nos.: 4 Outcome Nos.: 4 Signature of faculty

Academic Year	:	2021-22	Date: 23/12/12		
Semester	:	I			
Name of the Program: B.Tech	ı II Ye	ar	Section: A		
Course/Subject: INT	Course/Subject: INTRODUCTION TO FLUID MECHANICS Course Code: GR20A2012				
Name of the Faculty: S.VE	ENKA'	Г CHARYULU	Dept.: CIVIL ENGINEERING		
Designation: ASSISTANT F	ROFE	ESSOR			
Lesson No:46		Duration o	of Lesson: <u>1hr</u>		
Lesson Title: flow through INSTRUCTIONAL/LESSON			d problems		
On completion of this lesson to 1. Differentiate flow through 3. Explain flow through How 2. Solve problems on flow	n diffe rizonta	rent Horizontal tubes. Il tubes. Derivation			
TEACHING AIDS : W TEACHING POINTS :	hite B	oard /Marker			
Flow through inclined long	g tubes	s pressure drop, shear st	tress, velocity distribution		
Assignment / Questions:. 1Q shear stress, velcocity distribu	*	ve expression for Flow th	hrough inclined long tubes pressure drop,		
Objective Nos.:4	Outc	ome Nos.: 4	Signature of faculty		

Academic Year Semester	: 2021-22 : I		Date: 29/12/21
Name of the Program	: B.Tech II Year	Section	: A
Course/Subject: IN	TRODUCTION TO FLUI	D MECHANICS .	Course Code: GR20A2012
Name of the Faculty:	S.VENKAT CHARYU	ILUDep	ot.: CIVIL ENGINEERING
Designation: ASSIST	ΓANT PROFESSOR		
Lesson No:	47	Duration of Lesson	: <u>1hr</u>
Lesson Title: Problem	s on varius models		
INSTRUCTIONAL/I	LESSON OBJECTIVES:		
On completion of this	s lesson the student shall be	able to	
1. Describe flow th	arough inclined tubes.		
2. solve problems f	flow through inclined tubes		
TEACHING AIDS TEACHING POINTS	: White Board /Marker	:	
Flow between para	llel plate Plates pressure dr	op, shear stress, vel	ocity distribution problems
-	plate fixed and one plate m tubes pressure drop, shear		tribution problems
_	a velocity of 20 m/s. Assum		2.5 m long is towed length wise yer to be fully laminar, estimate its

Outcome Nos.: 4

Signature of faculty

Objective Nos.:4

Academic Year	: 2021-22	Da	ate: 30/11/21
Semester	: I		
Name of the Program: I	3.Tech II Year	Section: A	
Course/Subject:	INTRODUCTION TO	FLUID MECHANICS	Course Code:
Name of the Faculty:	. S.VENKAT CHARYU	JLUDept.: CIVIL	ENGINEERING
Designation: ASSISTA	NT PROFESSOR		
Lesson No:4	8	Duration of Lesson: 1hr	
Lesson Title: Probler INSTRUCTIONAL/LE			
On completion of this le	esson the student shall be	: :	
3. explain flow throug4. problems flow through	w through inclined tubes. gh inclined tubes probl	ems	
Flow through incline	d long tubes pressure dro	pp, shear stress, velocity distri	ibution problems
still air with a velocity of at the trailing edge	of 10 m/s. Assuming the	te 1m wide and 1.5 m long is boundary layer to be fully lar ows at 10 m/s past a smooth reco	minar, estimate its thickness
Objective Nos.: 4	Outcome Nos.: 4	Signature	e of faculty

Academic Year Semester	: 2021-22 : I		Date:5/1/22
Name of the Program: E	3.Tech II Year	Section	n: A
Course/Subject: INTI	RODUCTION TO FLUI	ID MECHANICS	Course Code: GR20A2012
Name of the Faculty:	S.VENKAT CHARYU	JLUDe	pt.: CIVIL ENGINEERING
Designation: ASSISTA	NT PROFESSOR		
Lesson No:4	9 Dı	ration of Lesson:	<u>1hr</u>
Lesson Title: Problei INSTRUCTIONAL/LE			
On completion of this le	esson the student shall be	: :	
_	es and lift forces with line body and problem	-	
TEACHING AIDS	: White Board /Marke	r	
TEACHING POINTS	:		
Lift forces- Magnus e	ine body, bluff body, ski effect problems Magnus effect problems	•	S
Assignment / Questions 1Q.) explain bluff body	:. 1Q.) explain Drag for , skin friction	ces- stream line bo	dy,
Objective Nos.: 4	Outcome Nos.: 4		Signature of faculty

Academic Year Semester	: 2021-22 : I	Date:5/1/22	
Name of the Program: B.Tec	ch II Year	Section: A	
Course/Subject: IN GR20A2012	TRODUCTION TO FL	UID MECHANICS Course Code:	
Name of the Faculty: S.V	ENKAT CHARYULU	Dept.: CIVIL ENGINEERING	
Designation: ASSISTANT	PROFESSOR		
Lesson No:50	Dura	ation of Lesson: 1hr	
Lesson Title: Problems on INSTRUCTIONAL/LESSO On completion of this lesson 1. Describe flow through in 2. Differentiate the flow through in 3. knowledge of solving pro-	ON OBJECTIVES: the student shall be ablanclined tubes. problems rough inclined tubes. Pr	roblems	
TEACHING AIDS : V TEACHING POINTS :	White Board /Marker		
Flow between parallel pla Flow between one plate fi	xed and one plate move	shear stress, velocity distribution problems problems ss, velocity distribution problems	
20cm diameter pipe a	at an average velocity of n. Assuming the pipe to	ematic viscosity 0.016 stoke is conveyed through f 2.2 m/s. The height of internal roughness be hydrodynamic cally rough, determine the fri	
2Q.) explain about Flow throproblems	ough inclined tubes press	sure drop, shear stress, velocity distribution	
Objective Nos.: 4	Outcome Nos4	Signature of faculty	

Academic Year	: 2021-22	2	Date:6/1/22
Semester	: I		
Name of the Prog	gram: B.Tech II Year	Sectio	n: A
Course/Subject:	INTRODUCTION TO FL	UID MECHANICS	Course Code: GR20A2012
Name of the Facu	ulty: S. VENKAT CHARY	JLUDept.: CIV	IL ENGINEERING
Designation: AS	SISTANT PROFESSOR		
Lesson No:	51	Duration of Lesson:	<u>1hr</u>
Lesson title: c	losed conduit flow: laws of	fluid friction - Darcy	's equation, Minor losses
INSTRUCTION	AL/LESSON OBJECTIVES	:	
On completion of	f this lesson the student shall	be	
2. Able to explain3. Ability to explain4. knowledge of sTEACHING AIDTEACHING POIclosed conduit	NTS : flow: laws of fluid friction,	vs of fluid friction es ker Darcy's equation, M	_ 5
bends, due to ty	losses due pipe fittings, such ype of fittings estions:. 1Q.) explain what a pression for the sudden enla	Is major loss and mic	
-	- · ·		onr losses ,

Outcome Nos.: 4

Signature of faculty

Objective Nos.: 4

Academic Year	: 2021-22	Date: 8/1/22	
Semester	: I		
Name of the Program:	B.Tech II Year	Section: A	
Course/Subject:GR20A2012	. INTRODUCTION TO I	FLUID MECHANICS Course C	ode:
Name of the Faculty:	. S.VENKAT CHARYUL	LUDept.: CIVIL ENGINEERIN	1G
Designation: ASSISTA	ANT PROFESSOR		
Lesson No:	52 Duration of Les	son: <u>1hr</u>	
Lesson Title: pipes	in series - pipes in parallel	Pipe network problems	
INSTRUCTIONAL/LE	ESSON OBJECTIVES:		
On completion of this l	esson the student shall be:		
 Identify connected Compute the conne Explain Pipe netwo Knowledge of solving 	cted pipes in parallel	eries - pipes in parallel	
TEACHING AIDS TEACHING POINTS	: White Board /Marker :		
Concept pipes in seri	ies - pipes in parallel -Pipe	network	
-	s:. 1Q.) what is pipe networking	_	

Outcome Nos.: 4

Signature of faculty

Objective Nos.: 4

Academic Year	: 2021-22	Da	nte: 12/1/22
Semester	: I		
Name of the Program	: B.Tech II Year	Section: A	
Course/Subject: IN	TRODUCTION TO FLUI	D MECHANICS Course Coo	de: GR20A2012
Name of the Faculty:	S.VENKAT CHARYU	ULUDept.: CIVIL ENGI	NEERING
Designation: ASSIS	ΓANT PROFESSOR		
Lesson No:	53 Dura	ation of Lesson: <u>1hr</u>	
Lesson Title: Tota	l energy line and hydraulic gr	radient line	
INSTRUCTIONAL/I	LESSON OBJECTIVES:		
On completion of thi	s lesson the student shall be	2 :	
 Differentiate Tota Explain hydrau 	al energy line in pipe flow		
•	on Total energy line and hy	draulic gradient line	

TEACHING POINTS

TEACHING AIDS

Total energy line and hydraulic gradient line in pipe flow. drawing the HGL and TEL lines

Assignment / Questions: 1Q.) explain total energy line and hydraulic energy line, 2Q.) explain bluff body, skin friction

: White Board / Marker

Academic Year	: 2021-22	Date: 13/1/22
Semester	: I	
Name of the Program: B.	Tech II Year	Section: A
Course/Subject:	INTRODUCTION TO	FLUID MECHANICS Course Code
Name of the Faculty:	S.VENKAT CHARYU	JLUDept.: CIVIL ENGINEERING
Designation: ASSISTAN	NT PROFESSOR	
Lesson No:54	Du	ration of Lesson: 1hr
Lesson Title: variation	of friction factor with	Reynold's number - Moody's Chart.
INSTRUCTIONAL/LES	SON OBJECTIVES:	
On completion of this les	son the student shall be	e able to
 Define friction factor compare variation o Explain moody char 	f friction factor with Re	
4 solve problems on fri TEACHING AIDS TEACHING POINTS	ction factor with Reyno : White Board/Market	

friction factor with Reynolds number moody chart rough pipes, smooth pipes friction factor with Reynolds number moody chart rough pipes, rough pipes friction factor with Reynolds number moody chart rough pipes commercials pipes

Assignment / Questions:. 1Q.) explain Drag forces- stream line body, 1Q.) explain bluff body, skin friction

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

TUTOTIAL SHEET - 4

Academic Year Semester	: 2021-22 : I	Date: 13/1/22
Name of the Program: B.Tech	IIYear:2	2021-22Section: A
Course/Subject:FLUID N	MECHANICS	
Name of the Faculty:S.V	ENKAT CHARYULU	Dept.:CIVIL ENGINEERING
Designation : ASSIST This Assignment corresponds		
dth 0.5m. calculate the thick r of the plate take density of air	ness of boundary layer at the as 1.24kg/m3 and kinematic er 8cm. The velocity at a point point wall. Determine the averathe velocity distribution for 1	nt is 3cm from wall is 30% more than the age height of the roughness aminar flow through the pipe.

Bachupally, Kukatpally, Hyderabad – 500 090, (040) 6686 4440

ASSIGNMENT SHEET -4

A cademic Y ear Semester	: 2021-22 : I	Date: 13/1/22
Name of the Program: B.Teo	chIIYear:	.2021-22 Section: A
Course/Subject:FLUID	MECHANICS	
Name of the Faculty:S.	VENKAT CHARYULU	Dept.:CIVIL ENGINEERING
Designation : ASS	SISTANT PROFESSOR.	
This Assignment correspond	s to Unit No. / LessonIV	

- 1. Q1. What is boundary layer discuss about the prandle contribution
- Q2 How the navier stokes equation influence in the fluid flow.? Discuss.
- Q3.Air flows 10m/s past a smooth rectangle flat plate 0.0.8m wide and 1.2 m long. Assume that the turbulent level in th on coming stream is low and that transition occurs at $Re=2x10^5$ calculate length of boundary layer form leading edge. Find thickness of boundary layer assume Blasius velocity profile.
- Q4. A plate of 600mm length and 400mm wide is mimmersed in afluid of sp.gr.and kinematic viscosity is 10 -4 m2/s .the fluid is moving with a velocity of 6m/s. Determine i)Boundary layer thickness ii)shearstress at the end of the plate iii) drag force on one side of the plate.

Academic Year :	2021-22	Date: 15/1/22
Semester	: I	
Name of the Program: B.Tech I	II Year	Section: A
Course/Subject: INTRODUC	TION TO FLUID MECHA	NICS Course Code: GR20A2012
Name of the Faculty: S.VEN	NKAT CHARYULU	Dept.: CIVIL ENGINEERING
Designation: ASSISTANT PR	ROFESSOR	
Lesson No:55	Duration of L	esson: <u>1hr</u>
Lesson Title: measurement of INSTRUCTIONAL/LESSON O	•	er
On completion of this lesson th	e student shall be:	
 Measurement of flow using Draw and explain pitot solving problems on measure 	tube, venturi meter	
TEACHING AIDS : White TEACHING POINTS : d	ite Board /Marker	
Assignment / Questions:. 1Q.) 1Q.) explain about the	explain different types of di	scharge measurements
Objective Nos.: 1	Outcome Nos.: 1	Signature of faculty

Academic Year	: 2021-22	Date: 19/1/22
Semester	: I	
Name of the Program: B.Tech	II Year	Section: A
Course/Subject: INTRODUCT	ΓΙΟΝ ΤΟ FLUID MECHAN	TICS Course Code: GR20A2012
Name of the Faculty: S.VE	NKAT CHARYULU	Dept.: CIVIL ENGINEERING
Designation: ASSISTANT PI	ROFESSOR	
Lesson No:56	Duration of Lo	esson: <u>1hr</u>
Lesson Title: measurement of	flow: pitotube, venturimeter	
INSTRUCTIONAL/LESSON	OBJECTIVES:	
TEACHING POINTS: Measurement of flow using pitotube, measurement of Assignment / Questions:. 1Q.)	e flow using the pitotube, ve flow: pitotube, venturimeter urement of flow: pitotube, venite Board / Marker the pitotube flow, venturimter etc Explain pitotube,	
1Q.) explain measurement of	<u> </u>	
Objective Nos.: 5	Outcome Nos.: 5	Signature of faculty

Academic Year	: 2021-22	Date:	20/1/22
Semester	: I		
Name of the Program: B	.Tech II Year	Section: A	
Course/Subject: GR20A2012	INTRODUCTION TO	FLUID MECHANICS	Course Code:
Name of the Faculty:	S.VENKAT CHARYU	JLUDept.: CIVIL EN	GINEERING
Designation: ASSISTAL	NT PROFESSOR		
Lesson No:57	7 Dı	uration of Lesson: 1hr	
Lesson Title: orifice n triangular_notch INSTRUCTIONAL/LES On completion of this les	SSON OBJECTIVES:	fices, flow over rectangular,	
 categorise the need of understand the classif 		nturimeter	
TEACHING AIDS TEACHING POINTS orifice meter - classifitriangular	: White Board /Marker: : cation of orifices, flow of		
Assignment / Questions:	10) explain Drag for	ces- stream line body	

Assignment / Questions: 1Q.) explain Drag forces- stream line body, 1Q.) A rough pipe of diameter 0.1m carries water at 200C at the rate of 55 lit/s. If the average height of projections on the pipe surface is 0.15mm, calculate the friction factor, maximum velocity, shear stress at the pipe surface and the shear velocity.

Outcome Nos.: 5 Objective Nos.: 5 Signature of faculty

Academic Year : 202 Semester : I	1-22 Date: 20/1/22
Name of the Program: B.Tech II Year	Section: A
Course/Subject: INTRODUCTION GR20A2012	ON TO FLUID MECHANICS Course Code:
Name of the Faculty: S.VENKAT CH	IARYULUDept.: CIVIL ENGINEERING
Designation: ASSISTANT PROFESSOI	R
Lesson No:58	Duration of Lesson: <u>1hr</u>
Lesson Title: orifice meter - classification triangular_notch INSTRUCTIONAL/LESSON OBJECTIVON Completion of this lesson the student serious student serious serio	VES: Shall be:
	ries water at 200C at the rate of 55 lit/s. If the average height mm, calculate the friction factor, maximum velocity, shear

Academic Year	: 2021-22	D	Date: 26/1/22
Semester	: I		
Name of the Program: 1	B.Tech II Year	Section: A	
Course/Subject: GR20A2012	. INTRODUCTION TO	FLUID MECHANICS	Course Code:
Name of the Faculty:	. S.VENKAT CHARYU	LUDept.: CIVI	L ENGINEERING
Designation: ASSISTA	ANT PROFESSOR		
Lesson No:	9 Duration of Le	esson: <u>1hr</u>	
Lesson Title: trapezo	idal and Stepped notches -F	Broad crested weirs.	
INSTRUCTIONAL/LE	SSON OBJECTIVES:		
 1 . , Discriminate trape. 2 Illustrate lustrate St. 3. explain Broad creste 	ed weirs with neat sketch	-Broad crested weirs. otches -Broad crested weirs.	
Derivation trapezoida	l and Stepped notches -Bral and Stepped notches -Brand Stepped notches -Bra	Broad crested weirs	
_	s:. 1Q.) Derive an expression for rectangular noted	sion for trepizoidal notch, h	

Outcome Nos.: 5

Signature of faculty

Objective Nos.: 5

Academic Year	:	2021-22	Date: 27/01/22	
Semester	:	I		
Name of the Program: B.Tec	h II Ye	ar	Section: A	
Course/Subject: INTRODU GR20A2012	JCTIO	N TO FLUID MECH	ANICS Course Code:	
Name of the Faculty: S.V	ENKA	Γ CHARYULU	Dept.: CIVIL ENGINEERING	
Designation: ASSISTANT	PROFE	ESSOR		
Lesson No:60		Duration of Le	esson: <u>1hr</u>	
Lesson Title: Problems on INSTRUCTIONAL/LESSON				
O I	turi met tot tube,	er expression in model	problems g inclined and horizontal case	
Pitot tube, theory Venturi meter theory hori Derivation Pitot tube Derivation Venturi meter	zontal a	and inclined		
vertical shape -edged orifice	placed coordin	under a constant head	e of 98.2 lit/sec through a 120mm diameter, d of 10m. A point on the jet, measured from and 0.54m vertical. Find the positions C_c , C_c	
Objective Nos.: 5	Outc	ome Nos.: 5	Signature of faculty	

Academic Year	:	2021-22	Date: 02/1/22
Semester	:	I	
Name of the Program: B.Teo	ch II Ye	ear	Section: A
Course/Subject: INTROGR20A2012	DUCT	ION TO FL	UID MECHANICS Course Code:
Name of the Faculty: S.V	'ENKA	T CHARY	ULUDept.: CIVIL ENGINEERING
Designation: ASSISTANT	PROFI	ESSOR	
Lesson No:61	, .	D	uration of Lesson: <u>1hr</u>
Lesson Title: pipes in ser	ies - Pr	oblem	
INSTRUCTIONAL/LESSO			
On completion of this lesson	n the stu	ıdent shall b	e
1. Differentiate, pipes in se	ries - w	ith common	pipes
2. The pipes in series - Moo	del Prol	blem	
3. solving problems on p	ipes in	series -paral	llel Problem
	White B	Board /Marke	er
TEACHING POINTS :			
pipes in series - Explanati			
pipes in parallel- Problem pipes in networking - Prol			ons
pipes in networking 1100	meni a	па аррпсан	7115
Assignment / Questions:. 1Q 2Q.) 1Qwhat is water distrib	-		ibution system how they design ? stem how they design?

Outcome Nos.: 5

Signature of faculty

Objective Nos.: 5

Signature of HOD

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090, (040) 6686 4440

ASSIGNMENT SHEET - 5

Academic Year	: 2021-22	Date: 02/1/22
Semester	: I	
Name of the Program: B.	TechII	Year:2021-22Section: A/B
Course/Subject:FLU	JID MECHANICS	
Name of the Faculty:	S.VENKAT CHARY	YULUDept.:CIVIL ENGINEERING
Designation : A	ASSISTANT PROFESS	SOR.
This Assignment corresp	onds to Unit No. / Less	sonUNIT-V
Q1. Classify types of no	otchs and weirs. And ob	otain the expression for the rectangular notch.
Q2 what is triangular not	ch? derive expression f	for the triangular notch
-	_	t the depth of 150mm and passthrough a triangular eir as 0.62 and 059 respectivly find the depth over
	-	ch which is 1m wide at the top 0.4m at the bottom and is cd=0.62 for rectangle and cd=0.6 for triangle portions.
Objective Nos.: 5		
Outcome Nos.: 5 and 5		

Signature of faculty

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous) Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

TUTOTIAL SHEET - 5

Academic Year	: 2021-22	Date: 02/1/22
Semester	: I	
Name of the Program: B.Tec	:hII	Year:2021-22Section: A/B
Course/Subject:FLUID	MECHANICS	
Name of the Faculty:S.	VENKAT CHAR	YULUDept.:CIVIL ENGINEERING
Designation : ASS	SISTANT PROFES	SSOR.
This Assignment correspond	s to Unit No. 5	
flow of water. The pressure a mercury. find the discharge of Q2 Hydraulic gradient line a Q3 Darcy weisch bach equat Q4 A 135° reducing bend is of	at inlet is 17.658n/of water through ve and Total energy li ion. connected in a pipe espectively, find the	ne ii) pipes connected in series and parallel e line, the diameter at the inlet and outlet of the bend ne force exerted by water on bend if internal pressure at
Objective Nos.: 5		
Outcome Nos.: 5 and 5		Signature of faculty

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

EVALUATION STRATEGY

Academic Year	:	2020-21
Academic Year	:	2020-2

Semester : I

Course/Subject: FLUID MECHANICS......... Course Code: GR20A2012

Name of the Faculty: ... S.VENKAT CHARYULU......Dept.: CIVIL ENGINEERING

Designation: ASST.PROFESSOR

1. **TARGET** : 85 % Result

A) Percentage for pass: 85 %

b) Percentage of class: I class with distinction 50%, I class 20%, pass class 15 %

2. COURSE PLAN& CONTENT DELIVERY

Course plan is designed in units and lesson wise . each unit is divided in to no of lessons . each lesson has covered as one hour lecture. Lecture classes are covered very effectively with concept of content is correlated to practical

Practices. Various models of numerical problems covered in each concept at define, apply, analyze level to meet the course objectives and to achieve the course out comes. Each unit is given one Tutorial problems which covers the understand and analyze level. Related program, course concept is covered in lab experiments. Different models are demonstrated such as weirs, notchs, spillways, channels, pipe flows ,venturimeter, orifice meter, Bernoullis theorem verification ,mouthpiece and orifice and Reynolds number verification.

3. METHOD OF EVALUATION

- 3.1 Continuous Assessment Examinations (CAE-I, CAE-II): continuation of assessment is doing with Conducting quiz, assignment, tutorials in each unit and for every 50% of course coverage by conducting the (mid exams) CAE-I and CAE-II. Assessment is also done based on attending of lessons. final assessment has done with external exams.
 - 3.2 Assignments/Seminars: Assignments and tutorial Sheets given for Each unit.
 - 3.3 Mini Projects: -
 - 3.4 Quiz: is conducted for each unit topic wise
 - 3.5 Semester/End Examination :End exam preparation with the model question paper (previous qp)
 - 3.6 Others: power point presentation
- 4. List out any new topic(s) or any innovation you would like to introduce in teaching the subjects in this Semester. Power point presentation of different units.

Signature of faculty

Date:

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

Mappings of CO's, COB's Vs PO's, POB's

P-Outcomes	A	В	→ C	D	Е	F	G	Н	I	J	K	L	PSO 1	PSO 2
Course -Outcomes														
1. Comprehend the various fluid properties and fluid statics.	M		Н	M			М			М		M	Н	M
2. Understand the broad principles of hydrostatic forces on submerged planes		М		М			М			М		M	М	М
3. Analyzing fluid dynamics and kinematics.	M	M	M	Н			M			M		M	M	Н
4. classify concept of boundary layer and predict the laminar and turbulent flows	M	М	Н	М			М			М		M	М	М
5. Predict the losses in pipes flows and able to calculate discharge measurement.	M	M	Н	М			М			М		M	М	М

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

MAPPING

GR20A2012 Int. Fluid Mechanics	Course Outcomes				
Course Objectives	1	2	3	4	5
1	X				
2		X			
3			X		
4				X	
5					X

Assessments

- 1. Assignment 2. Internal Examination 3. External Examination
- 4. Practical Projects 5. Viva

GR20A201	2		Course Outcomes			
Assessme	1	2	3	4	5	
1	X	X	X	X	X	
2	X	X	X	X	X	
3	X	X	X	X	X	
4	X	X	X	X	X	
5	X	X	X	X	X	
GR20A201	2		Course Ob	jectives		
Assessme	1	2	3	4	5	
1	X	X	X	X	X	
2	X	X	X	X	X	
3	X	X	X	X	X	
4	X	X	X	X	X	
5	X	X	X	X	X	
5				X		

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING & TECHNOLOGY

(Autonomous)

II B.Tech I Semester Mid-I Examinations

INTRODUCTION TO FLUID MECHANICS

(Civil Engineering)

Time: 90 Minutes Max Marks: 20

Time	(Answer ALL questions. All questions carry equal marks) : 75 Minutes	3 * 5	= 15 M	larks	
1	(a) Establish an Expression for Hydrostatic Law	[5]	CO1	BL2	
	(b) A Differential manometer contain fluids of sp.gr 0.95 and 0.85 in				
	pipe A and B at the same level. If the level of mercury in left limb and				
	right limb is at 25cm and 45 cm from the center of Center Of pipe				
	restively. find the differential pressure if the A and B are at the same level.				
	OR				
2	(a) what is Newton Law of viscosity Explain with neat skecth	[5]	CO1	BL2	
	(b) If the velocity of profile of a fluid over a plate is parabolic with the				
	vertex of 20 cm from the plate, where the velocity is 120 cm/sec .calculate				
	the velocity of gradients and sheer stress at a distance of 0,10 and 20 cm				
	from the plate, if the viscosity of the fluid is 8.5 poise.				
3	(a) Discuss the Veritcal submerged plane with derivation.	[5]	CO2	BL3	
	b) what is total pressure and center of pressure				
	OR	"	II.	I.	
4	(a) Discuss the Inclined submerged plane with derivation.	[5]	CO2	BL3	
	(b) Determine the total pressure on circular plate of diameter 1.5 m which				
	is placed vertically in water in such away that a centre of the plate is 3m				
	below the free surface of water. Find the centre of pressure also.				
5	(a)Explain the different types of Flows	[5]	CO3	BL3	
	(b) Explain the Metacentric heght and Metacenter				
	OR		·		
6	(a) what is different types Fluids with neat skech	[5]	CO1	BL2	
	(b) Explain the concept of surface tension and capilarity				

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING & TECHNOLOGY

(Autonomous)

II B.Tech I Semester Mid- I Examinations INTRODUCTION TO FLUID MECHANICS OBJECTIVE

Multiple Choice Questions (MCQs)
(Answer ALL questions. All questions carry equal marks)

Tim	e: 15 Minutes 10 *	$^{1}/_{2} = 5$	5 Marks
1	Relation between the atmospheric pressure(A) gauge pressure (G)and	[]
	absolute pressure(AB)		
	a) A= G-AB b) A= G+AB c) A= G/AB d) A= G - AB -G/AB		
2	Dimension of kinematic viscosity is given by] []
	a)MLT ⁻² b)M ² LT ² c)none d)All		
3	Poise is unit of	[]
	a) Mass density b) viscosity c) kinematic viscosity d) velocity gradient		
4	For the soap bubble surface tension and pressure difference are related as	[]
	a) $\Delta P = \sigma / 4$ d b) $\Delta P = \sigma / 2$ d c) $\Delta P = 4\sigma / d$ d) $\Delta P = 8\sigma / d$		
5	The M.I of triangle from the its base if h is height and b is base of triangle	[]
	a) $bh^3/12$ b) $hb^3/24$ c) $bh^3/36$ d) none		
6	Steady flow the lines and steady uniform flows	[]
	a) Similar b) orthogonal c) parallel d) orthogonal intersected		
7	Buoyancy force is related to weight of body in the fluid is equal to	[]
	a) Displacement of fluid b) velocity of fluid c) displacement d) acceleration		
8	Steady flow is properties of fluid w. r. t to	[]
	a) Distance b) velocity c)time d) none		
9	Condition for the possible case of fluid flow for two dimensional flows is	[]
	a) Velocity in one direction only b) Velocity in two direction only		
	c) Velocity in three direction only d) Velocity in four direction only		
10	Continuity equation is based on the principle of conservation of a) Energy b) Mass c) Momentum d) all	[]
	a) Lifergy 0) Mass c) Monientum u) an		

Gokaraju Rangaraju Institute of Engineering and Technol Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

INTRODUCTION TO FLUID MECHANICS Subject Code: GR20A2010

II B.Tech I Sem II MID Descriptive Exam Date: 30-1-2021 Time Duration: 30 min Max Marks: 10

Answer any two questions. Each question carries 5 marksa

- 1) Derive the energy equation and discuss the surface body forces (5M) (Co3)
 - 2 a) Explain laminar and turbulent boundary layer concept
- b) Three different types of diameters of pipes are in series which are connected two reservoirs A and B the length of pipes are 300m,170m, and 210m Respectively with diameters of 300mm,200mm and 400mm
- respectively if the total head is 12m and f1=.2=005, f2=.0051 and f3=400mm find all i) minor losses ii) all
- major losses . Take v1=1.407m/s , v2 is 2 times v1 and v3 is 0.5 time v1 (2.5+2.5M) (Co 4)
- 3a) Derive the Darcy WeischBatch equation (2.5+2.5M) (Co 5)
 - b) Write short note on pitot tube, stepped notch

Gokaraju Rangaraju Institute of Engineering and Technol Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

INTRODUCTION TO FLUID MECHANICS Subject Code: GR20A2010

II B.Tech II I Sem 2021

II MID QUIZ Exam

Date: 30-1-

Time Duration: 10

Max Marks: 10

Rollnumber N. 1. 10 1 10	
Time Duration:10min Marks: 10x1 =10	
Answer all questions. Each question carries equal marks	
1 In pipe bend the total force is equal to	(
)	
a) Change in velocity b) change in momentum c) change in acceleration d) none	
2. Euler equation contain	(
)	
a) Gravity forces b) pressure forces c) elastic forces d) a and b	
3. If the weir is said to be broad crested when length and Head relationship are	(
)	,
a) 2L>H b) 2L=3H c) 2L, <h all<="" d)="" td=""><td></td></h>	
4. The ratio of max velocity to the average velocity of flow in long tube is	(
4. The faile of max velocity to the average velocity of flow in long tube is	(
)	
a) Vmax= 2/3 Average velocity b) Vmax = 1 c) Vmax= v mean d) V max> Vmean	
5. The discharge expression for the trapezoidal notch is	(
a) combine rectangle and two triangle b) combine rectangle and 1 triangle c) combine 2 Rectangle	
and 2 Triangle	
6. Energy equation is given as	(
o. Energy equation is given as	(
a) Pressure head b) velocity head c) Datum head d) none	
7. Laminar Boundary layer thickness is given by notation	(
)	(
a) δ^1 b) δ^* c) δ^{**} d) δ	
8. Displacement thick ness and Energy thickness is given as	(
)	
a) $\delta^1 \delta^*$ b) $\delta^* \delta^{**}$ c) $\delta^{**} \delta^*$ d) $\delta \delta^*$	
9. The range of Laminar boundary is	(
)	
a) 1x10 ⁵ b) 1x10 ⁶ c) 1x10 ⁷ d) 1x10 ⁸	
10. The Total Energy line and Hydraulic Gradient line and center line of pipe are	(
)	
a) Intersect each other b) parallel to each other c) both d) none	

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

MID-1 MARKS

Roll.No	Q.No 1	Q.No 2	Q.No 3	Q.No 4	Q.No 4
1	CO1(5M)	CO1(5M)	CO2(5M)	CO2(2.5M)	CO3(2.5M)
2	2.5	1.5	1.5	2.5	1.5
3	2.5	3	1.5	2.5	2.5
4	1	1	1.5		
5	2.5				
6	4.5				
7	2.5		1		
8	1.5	2.5	1	1.5	
9	4	4	3.5		
10		2.5		1	1
11	4.5	3	4.5		
12	4.5	3	1.5	2	
13	2	5		2	2.5
14	0.5	1		2.5	2.5
15	3.5	4.5		1.5	1.5
16		4	5	1.5	
17	2.5	2.5	2.5		
18	4.5	3.5	2.5		
19	2.5		4	1	
20	2.5			2	1
21	2.5	3	5	1.5	2.5
22	2	0.5	1		
23	2.5			2	
24	2.5				
25	1.5	1.5	1.5		
26	1.5	1	1		
27	5	1	3		
28	3.5	3.5		1.5	2.5
29	2.5	4.5	4.5		
30	2.5	1			
31	4.5	5	2.5		
32	4.5	4.5	3.5		
33		4.5	1.5	2.5	1.5
34	2.5	1.5	1.5		

35	5	5	5	1.5	2
36	3.5	2	2		
37	5	4.5	2	1.5	2.5
38	4.5	3.5	3		
39	5	4		1	
40		3.5	3.5	2.5	
41	2.5	2	2		
42	2.5	5	4.5		
43	5	5	3		
44	3.5	5	2.5		2.5
45	0.5		2		
46		1.5	3.5		
47	3.5	1	1		1.5
48	2.5	1			
49			2.5	2.5	
50	5	4.5	4.5		
51				1.5	1.5
52					
53					
54	4.5	4.5	4.5		
55	3.5	5		2.5	2.5
56	2.5				
57	2.5		4.5	2.5	2.5
58	4.5	5	5		
59		5	2.5	3.5	
60	5	2.5	2		
61		5	4.5	1.5	2.5
62	5	4.5	4		
63	5	2.5			2.5
64	5	5	5		

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

MID-II MARKS

S.No	Roll No	Q.No 1	Q.No 2	Q.No 3	Q.No 4	Q.No 4
S.No	Roll No	CO3(5M)	CO4(5M)	CO4(5M)	CO5(2.5M)	CO5(2.5M)
1	20241A0101	2.5			1	
2	20241A0102		2.5	2	2	
3	20241A0103	3			2	2.5
4	20241A0104	5	5		1.5	2.5
5	20241A0105	4	5	4.5	1	1
6	20241A0106	2.5	2.5		1.5	1.5
7	20241A0107	5	4	4	1	1
8	20241A0108	5	5	2.5	2.5	2.5
9	20241A0109	2.5			1	2
10	20241A0110	2		0.5		
11	20241A0111		4	4	4	
12	20241A0112	2	1.5			
13	20241A0113	4		4.5	2.5	
14	20241A0114	2.5		3.5	1.5	1.5
15	20241A0115			3.5	1	1.5
16	20241A0116	2.5		5	1.5	2.5
17	20241A0117		5	4	1.5	1.5
18	20241A0118	2.5		1	0.5	
19	20241A0119	4.5		2.5	2.5	
20	20241A0120	0.5		2.5		
21	20241A0121	1			2.5	2.5
22	20241A0122	5	2.5	5		
23	20241A0123	4.5	3			
24	20241A0124	2.5	4.5	4.5	4	
25	20241A0125	5	4	2.5		
26	20241A0126			1.5	1	1
27	20241A0127	4.5		4.5	1.5	2.5
28	20241A0128	2.5		0.5		2.5

29	20241A0129	2.5		1.5		2.5
30	20241A0130	4.5	5	4	2	2.5
31	20241A0131	5	4.5		2.5	
32	20241A0132	1.5	1			
33	20241A0133					
34	20241A0134	4.5		1.5	2	2
35	20241A0135	4		5	2.5	2
36	20241A0136	2.5	2.5			
37	20241A0137	4.5	4		2.5	2.5
38	20241A0138	5	5	4.5	2	
39	20241A0139	5	5	5		
40	20241A0140	4.5	5	3		
41	20241A0141	4		5		2
42	20241A0142	1.5		2.5		
43	20241A0143	1.5		1.5		
44	20241A0144	2.5	3			
45	20241A0146	2.5			2.5	1.5
46	20241A0147	2.5	1	2	1.5	
47	20241A0148	4.5		4.5	1.5	
48	20241A0149	4.5		4.5	1	2
49	20241A0150	2.5	5	0.5		
50	20241A0151	2.5	4.5	1.5		
51	20241A0152	4	1.5	1		
52	20241A0153	2.5	4	1.5		
53	20241A0154	4.5		2.5		
54	20241A0155		5	5	1	2.5
55	20241A0156			3	2.5	1.5
56	20241A0157	4.5	4.5	5		
57	20241A0158	5	5			2.5
58	20241A0159		5	4.5	5	
59	20241A0160	4	3.5		1.5	2.5
60	21245A0101	4.5	5		2.5	2.5
61	21245A0102	3.5	4.5		1.5	2.5
62	21245A0103	3.5		1.5	2.5	2.5
63	21245A0104	5		2.5	2.5	2.5
64	21245A0105	4.5		1.5	2.5	2.5

Bachupally, Kukatpally, Hyderabad – 500 090, (040) 6686 4440

RUBRIC FLUID MECHANICS

Academic Year	: 2021-22
Semester	: I
Name of the Program	: B.TechII
Course/Subject:GR20A2012	INTRODUCTION TO FLUID MECHANICS Course Code:
Name of the Faculty:	S.VENKAT CHARYULUDept.:CIVIL ENGINEERING
Designation	: ASSISTANT PROFESSOR.
Objective: To learn	Theory and practical aspect of Fluid Mechanics

Student outcome: Learn application of different INTRODUCTION TO FLUID MECHANICS concepts and hands on Experience of

Irrigation and Hydraulic fields

RUBRIC TEMPLATE FLUID MECHANICS

			Beginning	Developing	Reflecting Development	Accomplished	Exemplary	Scor e
S.N o	Name of the student	Performance Criteria	1	2	3	4	5	
1	21245A010 1	The level of knowledge on understand	Low level knowledge on understand	Able to understand various	Ability to explain various	Full knowledge various	Thoroughly analysing & applying	5
		Ability to calculate the various		Able to understand to calculate the	Ability to explain And calculate	Full knowledge to calculate the	Thoroughly analysing & applying to	5
		Ability to calculate the various	U	Able to understand to calculate the	Ability to explain to calculate the	Full knowledge to calculate the various	Thoroughly analysing & applying to calculate the	5
		The level of knowledge on fluid	level knowledge on fluid	Able to understand fluid	Ability to explain fluid mechanics	Full knowledge fluid	Thoroughly analysing & applying fluid	5
						Average		5

RUBRIC TEMPLATE FLUID MECHANICS

			Beginning	Developing	Reflecting Development	Accomplished	Exemplary	Scor e
S.N o	Name of the student	Performance Criteria	1	2	3	4	5	
2	21245A010 1	The level of knowledge on understand	Low level knowledge on understand	Able to understand various	Ability to explain various	Full knowledge various	Thoroughly analysing & applying	5
		Ability to calculate the various	Low level knowledge on to calculate	Able to understand to calculate	Ability to explain And calculate	Full knowledge to calculate	Thoroughly analysing & applying to	4
		Ability to calculate the various	Low level knowledge on to calculate the		Ability to explain to calculate the	Full knowledge to calculate the various	Thoroughly analysing & applying to	5
		The level of knowledge on fluid	Low level knowledge on fluid	Able to understand fluid	Ability to explain fluid mechanics	Full knowledge fluid	Thoroughly analysing & applying fluid	5
						Average		5

RUBRIC TEMPLATE FLUID MECHANICS

Rol.No	Name of the student	Beginning	Developing	Reflecting Development	Accomplished	Exemplary	Score
2124A0103		1	2	3	4	5	
	The level of knowledge on understand various	Low level knowledge on understand various	Able to understand various concepts of	Ability to explain various concepts of Fluid statics	Full knowledge various concepts of Fluid statics	Thoroughly analysing & applying various	4
	Ability to calculate the various problems of	Low level knowledge on to calculate the various	Able to understand to calculate the various	Ability to explain And calculate the various	Full knowledge to calculate the various problems of	Thoroughly analysing & applying to calculate the	4
	Ability to calculate the various problems of	Low level knowledge on to calculate the various	Able to understand to calculate the various	Ability to explain to calculate the various	Full knowledge to calculate the various problems of	Thoroughly analysing & applying to calculate the	5
	The level of knowledge on fluid mechanics	Low level knowledge on fluid mechanics	Able to understand fluid mechanics	Ability to explain fluid mechanics concepts by	Full knowledge fluid mechanics concepts by	Thoroughly analysing & applying fluid mechanics	4
					Average		4

			Beginning	Developing	Reflecting Development	Accomplished	Exemplary	Score
S.No	Name of the student	Performance Criteria	1	2	3	4	5	
4	2124A0104	The level of knowledge on understand various concepts of Fluid statics	Low level knowledge on understand various concepts of Fluid statics	Able to understand various concepts of Fluid statics properties,	Ability to explain various concepts of Fluid statics properties, mechanics and	Full knowledge various concepts of Fluid statics properties,	Thoroughly analysing & applying various concepts of Fluid statics	4
		Ability to calculate the various problems of fluid pressures fluid at static,	Low level knowledge on to calculate the various problems of fluid pressures	Able to understand to calculate the various problems of fluid pressures	Ability to explain And calculate the various problems of fluid pressures	Full knowledge to calculate the various problems of fluid pressures	Thoroughly analysing & applying to calculate the various problems of	3
		Ability to calculate the various problems of boundary layer, Drag and lift	Low level knowledge on to calculate the various problems of boundary layer,	Able to understand to calculate the various problems of boundary layer,	Ability to explain to calculate the various problems of boundary layer,	Full knowledge to calculate the various problems of boundary layer, Drag and lift	analysing & applying to calculate the	3
		The level of knowledge on fluid mechanics concepts by application of	Low level knowledge on fluid mechanics concepts by application of	Able to understand fluid mechanics concepts by application of	Ability to explain fluid mechanics concepts by application of designing pipe	Full knowledge fluid mechanics concepts by application of	Thoroughly analysing & applying fluid mechanics concepts by application of	4
						Average		4

(

COURSE COMPLETION STATUS

Academic Year : 2021-22

Semester : I

Course/Subject: INTRODUCTION TO FLUID MECHANICS Course Code:

...GR20A2012

Name of the Faculty:S.VENKAT CHARYULUDept.:...CIVIL ENGINEERING

Designation : ASSISTANT PROFESSOR.

Objective: To learn Theory and practical aspect of Fluid Mechanics

Units	Remarks	Objectives Achieved	Outcomes Achieved
Unit I	20/10/21 Unit covered on time	1	1
Unit II	30/10/21Unit covered on time	2	2
Unit III	30/12/21Unit covered on time	3	3
Unit IV	19/1/22 Unit covered on time	4	4
Unit V	29/1/22 Unit covered on time	5	5

Signature of HOD

Date: Date:

Signature of faculty

Note: After the completion of each unit mention the number of Objectives & Outcomes Achieved.

A-Swikar A	200
------------	-----

	15	
	-	
_	7	_

	Gokara		angaraju Institute of Engineering & Te (Autonomous College Affiliated to JNTUH) Sachupally, Kukatpally, Hyderabad - 500090	chnology (12 Pages	
	I	11	MID TERM EXAMINATION		
No	3935	29			_

1	0000		H.T. No.	2020	E 1 1/2	0110	-
Name of	the Examination	m Iutroda	action to F	had Hech	ories		
Course_B- Tech			Branch	C9V.2		06/12/21.	
						ire of he Invigila	

Q.NO.		1 2		2 3		4		5		6		TOTAL	
	а	b	а	ь	a	ь	a	ь	a	b	а	ь	TOTAL
MARKS	a	10			1	2	-		-				62

Hydrostotic Law: The Law contich States the Hydrostotic friely blu the two fluids

-) It is useful for relation bloothings.

Marometer: It is measuring Pustrument cohial is used on Measuring of pressure of fluid.

-) They are of two types () Simple Mayometer () differential Manometer.

of differential Honometer is used by using two types Theoryflund (Theasuring fluid

> It have one endattached to point a and another (1) Surface tension: ead is to atmosphere The out of the fluid property. It sens the force -) Ithur Marco Gokaraju Rangaraju Institute of Engineering & Technology (Autonomous College Affiliated to JNTUH) Bachupally, Kukatpally, Hyderabad - 500090 Ves MID TERM EXAMINATION It H.T. No. 333576 0 ne of the Examination IST - MID TERM EXAMINATION irse Fluid Mechanica Branch Civil - A To O The O.NO. TOTAL MARKS To START WRITING FROM HERE Ce an expression for Hydrostatic deilde manameter contain Laitnershio A. and 0.85 in pipe sp.98 0.95 05 same level . It the the at and B left limb and in

25cm and

pressure

wolacit ..

same viscosity

centr of pipe

sheen stress at a distance of 0,10 est ji, etalg est many moss ety of the fluid is so paise.

dimb

center

netwon

Mercury

045

is at

differential are at the

Daw ob

cusy the vertical submerged plane in derivation what is total pressure it I contan of pressure piecuss the dined submerged plane with derivation no excepted lotat ent enimus which cular plate of diameter is m which placed vertically in water in and you nature a tente yours do eary ent wells me si eta where of water Find the contre transplut art mialgx 3. dal anussars of ent minters small to 1996 retacentric height and metacenter that is different types of fluids with neat skeen explain and material surface the entire capilarity.

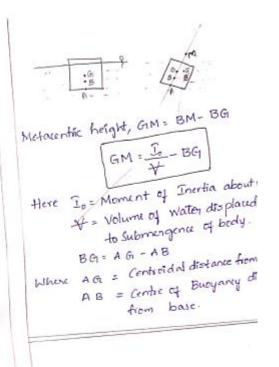
3) It the velocity of profile of a third over a plate if parabolic with the vertex of soom from the plate, where the velocity is soumised calcula the velocity of gradients and sheen ross time of a sometime of a community from the plate, if the viscosity of the fluid is 8 5 poige. A differentia Manameter contain thirds of sp. 92095 and oes in pipe A and B at the same Doubl - It the land of nevery in lost limb and right limb is at sum and 45 cm.

45 cm from

sligary so

restively

il.


with

level.

Examination I Year Isem Mid 1 Examinations Date 06-12-202 CIVIL Branch M . Socodo_ Signature of the Invigilator TOTAL Q.NO. 15 MARKS WRITING FROM HERE Newton Law of Viscosity. ionsider a fluid flow which the velocity at : layer of a fhild is u. id the velocity at adjacent top layer is uto relocity distribution is a parabolic variation separated by a dista he two layers are 1-then shear stress is directly proportion velocity gradient / shearstrain / mate strain. 40A+B=0 = A = -B +0 (in (=) 400 (B) + 20 B ± 120 m = Coefficient of Viscosity du = velocity quadient (stranstrain)
nate of stranstrain Substitute Bin (1) =) A = -12 &3 =-0.3 law of Wiscosity: It states that the A = -0:3 Stress in a fluid flow is directly and to its velocity gradient Substitute A,B& Cineq u= Ay24 By1c 4 = 0342+124 dy = -0.64 +12 ormisec @ adrotance -@ ocm 1) du = -0 6(0)+12 = 12 5 m µ=8.5poise (2 10cm =) dy = -0-6(10)+12 = 65 = 0.85 N-S [: Ipoise=0.1N-5] (20cm=) du = -0.6(20)+12=05 · consider, u= Ay+By+c 1 4=0 => 0=A(6)+B(0)+C=> C=0 Unsteady flow: In this flow the flute properties like velocity etc. are not Consta x = w 5x . dA. with respect to time 5 = 0 (Ig+A x²) i.e. du +0 inh = 60 (In+Az2) Uniformflow; A flow in the the fluid h = IG + x = centre of pressure properties with ouspet to space are AX Constant du =0 ssure: It is the fore pressure Non-uniformation: The fluid flow in which ting on a Swiface either a plane the fletted properties with respect to space are not constant ed shape. Which is in contact e fluid is casted Total pressure. : pressure: It is the point of i.e. dy +0 Rotational flow: The fluid parties settated essure. In other words it is along its own axis also is known as on of point of Total pressure.

atent flow: If the fluid flows in a ag manner it is called Turbulent flow. yers crosses other layer. Re=>2500piv>4000 unsional/twoodimensional/three dimensionals fluid flow is in one direction, ection and three direction respectively unsional 40(x,D,0), v=(x,y,0), w=(x,y,0) mensional u=(x,y,0), v=(x,y,0), w=(x,y,0) imensional u=(x,y,2), v=(x,y,2), v=(x,y,2), v=(x,y,2), v=(x,y,2), v=(x,y,2), v=(x,y,2)

incheights Metacentre: When the force of buoyancy is inclined if degree by the inclination of the axis of force of buoyancy ormal axis intersects at a is called Metacentre and its from the Centre is called buoyancy

