## DESIGN OF CONCRETE STRUCTURES-I(GR18A3003)

III-B.Tech – I Semester (AY 2021-22)

## Dr. T. SRINIVAS / Mr. K. VEERA BABU Professor /Assistant Professor



# Department of Civil Engineering Gokaraju Rangaraju Institute of Engineering and Technology

Bachupally, Kukatpally, Hyderabad – 500 090.



### Gokaraju Rangaraju Institute of Engineering and Technology Department of Civil Engineering

### **Design of Concrete Structures - I**

### **Course File Check List**

| S.No | Name of the Format Page No.                       |  |
|------|---------------------------------------------------|--|
| 1    | Syllabus                                          |  |
| 2    | Time Table                                        |  |
| 3    | Program Educational Objectives                    |  |
| 4    | Program Objectives                                |  |
| 5    | Course Objectives                                 |  |
| 6    | Course Outcomes                                   |  |
| 7    | Students Roll List                                |  |
| 8    | Guide lines to study the course                   |  |
| 9    | Course Schedule                                   |  |
| 10   | Course Plan                                       |  |
| 11   | Unit Plan                                         |  |
| 12   | Lesson Plan                                       |  |
| 13   | Tutorial Sheets                                   |  |
| 14   | Assignment Sheets                                 |  |
| 15   | Evaluation Strategy                               |  |
| 16   | Assessment in relation to COb's and CO's          |  |
| 17   | Rubric for course                                 |  |
| 18   | Mappings of CO's and PO's                         |  |
| 19   | Model question papers                             |  |
| 20   | Mid-I and Mid-II question papers                  |  |
| 21   | Mid-I marks                                       |  |
| 22   | Mid-II marks                                      |  |
| 23   | Sample answer scripts and Assignments             |  |
| 24   | Course materials like Notes, PPT's, Videos, etc,. |  |

#### **GOKARAJU RANGARAJU**

#### INSTITUTE OF ENGINEERING AND TECHNOLOGY

#### **Department of Civil Engineering**

#### **DESIGN OF CONCRETE STRUCTURES-I**

Course Code: GR18A3003 LTPC

III Year I Semester 3 0 0 3

#### UNIT I

**Concepts of R.C Design**: Study of the strength, behaviour, and design of indeterminate reinforced concrete structures. Loads and stresses, load combinations. Working stress method and limit state approach as per IS-456-2000.

#### UNIT II

Analysis and Design of Beams: Analysis and design of rectangular and T-sections using limit state method. Beams with reinforcement in compression. Design for shear, torsion and bond using limit stateconcept. Mechanism of shear and bond failure. Development length of bars; I.S. code provisions- design examples in simply supported and continuous beams with detailing.

#### **UNIT III**

**Design of Slabs**: Design of two-way slab and one way slab using I S coefficients. Placement of reinforcement in slabs. Design of flat slab – direct method

**Design of Stair case and Canopy:** Design of staircase and canopy (portico).

#### **UNIT IV**

**Design of Columns**: Design of Short columns, columns with uni-axial and bi-axial bending. Design of long columns, use of design charts- I S code provisions.

#### **UNIT V**

**Design of Foundation**: Wall footing, Isolated and combined footing for columns. Limit state design of serviceability for deflection, cracking and codal provisions

#### **TEXT/REFERENCE BOOKS:**

- 1. Fundamentals of reinforced concrete design by M.L. Gambhir, Prentice Hall ofIndia Private Ltd., New Delhi.
- 2. Reinforced concrete structural elements-behaviour, analysis and design by Purushotam, Tata Mc.Graw Hill, New Delhi.
- 3. Limit State design by B.C.Punmia, Ashok Kumar Jain and Arun Kumar Jai, Laxmi publication Pvt.Ltd., New Delhi.



### Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

AY: 2021-22.

**SEC: A &B** 

#### **Department of Civil Engineering**

#### TIME TABLE

**COURSE: Design of Concrete Structures - I** 

III YEAR I SEM w.e.f: 01-09-2021

#### III B.TECH(GR18) – I SEMESTER

Day/Hou 9:55 -10:50 -12:45 -9:00 - 9:55 11:45-12:25 1:15 - 2:05 2:05-2:55 10:50 11:45 1:15 MON DCS-I(B) TUE DCS-I(A) DCS-I(A) WED DCS-I(B) LUNCH **BREAK** DCS-I(A) DCS-I(B) THU DCS-I(B) FRI **SAT** DCS-I(A)

| Signature of HOD | Signature of faculty |
|------------------|----------------------|
| Date:            | Date:                |



#### Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **Programme Educational Objectives (PEO's)**

- 1. Graduates of the programme will be successful career in technical and professional career.
- 2. Graduates of the programme will have proficiency in solving real time Civil Engineering projects.
- 3. Graduates of the programme will continue to engage in lifelong learning with ethical and social responsibility.

#### **Program Outcomes (PO's)**

Graduates of the Civil Engineering programme will be able to

- a. apply knowledge of mathematics, science and fundamentals of Civil Engineering.
- b. analyse problem and interpret the data.
- c. design a system component, or process to meet desired needs in Civil Engineering within realistic constraints.
- d. identify, formulate, analyse and interpret data to solve Civil Engineering problems.
- e. use modern engineering tools such as CAD and GIS for the Civil Engineering practice.
- f. understand the impact of engineering solutions in a global, economic and societal context.
- g. understand the effect of Civil Engineering solutions on environment and to demonstrate the need for sustainable development.
- h. understanding of professional and ethical responsibility.
- i. work effectively as an individual or in a team and to function on multi-disciplinary context.
- j. communicate effectively with engineering community and society.
- k. demonstrate the management principles in Civil Engineering projects.
- l. recognize the need for and an ability to engage in life-long learning.

#### **Program Specific Outcomes (PSO's)**

**PSO1**: Recognize the need for a sustainable environment and design smart infrastructure considering the global challenges.

**PSO2:** Create and develop innovative designs with new era materials through research and development.

| Signature of HOD | Signature of faculty |
|------------------|----------------------|
| Date:            | Date:                |



Academic Year

## Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **COURSE OBJECTIVES**

| Semester                     | : I             |           |                        |
|------------------------------|-----------------|-----------|------------------------|
| Name of the Program: B.Tec   | h Civil Engg.   | Year: III | Section: A & B         |
| Course/Subject: Design of Co | oncrete Structu | res-I     | Course Code: GR18A3003 |

Name of the Faculty: Dr.T. Srinivas / Mr.K. VEERA BABU Dept.: Civil Engineering

Designation: Professor / Assistant Professor

On completion of this Subject/Course the student shall be able to:

: 2021-22

| S.No | Objectives                                                                                  |
|------|---------------------------------------------------------------------------------------------|
| 1    | Classify Working Stress and Limit State method in design of reinforced concrete structures. |
| 2    | Analyse and design of beams.                                                                |
| 3    | Design slabs, stair case and canopy.                                                        |
| 4    | Design columns                                                                              |
| 5    | Design of footings, beams and slabs for Limit state of serviceability.                      |

| Signature of HOD | Signature of faculty |
|------------------|----------------------|
| Date:            | Date:                |



Academic Year

## Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

### Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **COURSE OUTCOMES**

| Semester | : I |  |
|----------|-----|--|

: 2021-22

Name of the Program: B.Tech Civil Engg. Year: III Section: A & B

Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: Dr.T.Srinivas / Mr.K.VEERA BABU Dept.: Civil Engineering

Designation: Professor / Assistant Professor

On completion of this Subject/Course the student should be able to:

| S.No | Outcomes                                                                                    |
|------|---------------------------------------------------------------------------------------------|
| 1    | Classify Working Stress and Limit State method in design of reinforced concrete structures. |
| 2    | Analyse and design of beams.                                                                |
| 3    | Design slabs, staircase and canopy.                                                         |
| 4    | Design columns.                                                                             |
| 5    | Design footings, beams and slabs for limit state of serviceability.                         |

| Signature of HOD | Signature of faculty |
|------------------|----------------------|
| Date:            | Date:                |



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### STUDENT ROLL LIST

### B.Tech CIVIL Engg. IIIyr-I Sem- Section A (GR18) 2021-22

| S.NO | Roll No    | Name                        |
|------|------------|-----------------------------|
| 1    | 18241A0151 | SOHEB PATEL                 |
| 2    | 18241A0152 | SRIAM SHIVA ADITYA          |
| 3    | 19241A0101 | RUHAIL AHMAD LONE           |
| 4    | 19241A0102 | AITHA SAI TEJA              |
| 5    | 19241A0103 | BARISETTY SHIVA KARTHIK     |
| 6    | 19241A0104 | BENDHI VARUN THEJA GOUD     |
| 7    | 19241A0105 | BHUKYA VAMSHI               |
| 8    | 19241A0106 | BOGE VENKAT ROHITH          |
| 9    | 19241A0107 | BONTHA PRANEETHKUMAR        |
| 10   | 19241A0108 | CHILUKA RAHUL               |
| 11   | 19241A0109 | DANDI KIRAN                 |
| 12   | 19241A0110 | DAYYA RAGNESH               |
| 13   | 19241A0111 | E MANISH GOUD               |
| 14   | 19241A0112 | ERRAM SAI PRIYA             |
| 15   | 19241A0113 | G DEEPIKA                   |
| 16   | 19241A0114 | GORANTALA SAI               |
| 17   | 19241A0115 | GUGULOTHU SANTHOSH          |
| 18   | 19241A0116 | GURIJALA SAI KUMAR          |
| 19   | 19241A0117 | GURUJALA SRIDHAR            |
| 20   | 19241A0118 | IRUVANTI HEMANTH KUMAR      |
| 21   | 19241A0119 | JANGITI VYSHNAVI            |
| 22   | 19241A0120 | JARUPLA CHERAN              |
| 23   | 19241A0122 | JETTI SREEVANI              |
| 24   | 19241A0123 | K SOWMYA                    |
| 25   | 19241A0124 | KADALI KRISHNASRI SAI       |
| 26   | 19241A0125 | KAMAREDDY AKSHAY            |
| 27   | 19241A0126 | KATTA SAI KUMAR             |
| 28   | 19241A0127 | KOLLURI.TEJASWI             |
| 29   | 19241A0128 | KONDAPURAM SRIJA            |
| 30   | 19241A0129 | KOTTE VIVEK                 |
| 31   | 19241A0130 | KRUTHIKA VIJAY PALANGE      |
| 32   | 19241A0131 | MADA AKHIL REDDY            |
| 33   | 19241A0132 | MADARAM SHRAVAN KUMAR REDDY |
| 34   | 19241A0133 | MADDIGATLA AJAY SAGAR       |

| 35 | 19241A0134 | CHANDANA MALPATEL             |
|----|------------|-------------------------------|
| 36 | 19241A0135 | MANDALA CHINNI                |
| 37 | 19241A0136 | MIREGILLA VIJAYAKUMAR         |
| 38 | 19241A0137 | MOHD OBAID KASHIF             |
| 39 | 19241A0138 | NARAPAKA MADHAV KUMAR         |
| 40 | 19241A0139 | NIMMALA ARSHITHA              |
| 41 | 19241A0141 | P SIDDARTHA                   |
| 42 | 19241A0142 | PAGIDIPALLY AJAY KUMAR        |
| 43 | 19241A0143 | PALLAPU NAVEEN                |
| 44 | 19241A0144 | PALLE SANATH KUMAR            |
| 45 | 19241A0145 | PANTANGI PRANAY               |
| 46 | 19241A0146 | PATIL SWAPNIL                 |
| 47 | 19241A0147 | POLISETTY SAAHAS              |
| 48 | 19241A0148 | S.SAITEJA                     |
| 49 | 19241A0149 | SAI NEERAJ M                  |
|    |            | SATYA SAI PRASANNA REDDY      |
| 50 | 19241A0150 | SOLIPETA                      |
| 51 | 19241A0151 | SHAIK BILAL                   |
| 52 | 19241A0152 | SHAIK FIRDOUS AYESHA          |
| 53 | 19241A0153 | SOORA VIKAS                   |
| 54 | 19241A0154 | TELLAM SRI SAI PAVANA ROSHINI |
| 55 | 19241A0155 | THALLAPALLY SWARANYA          |
| 56 | 19241A0156 | THUMATI VENKATA VAYUNANDHAN   |
| 57 | 19241A0157 | UDUMULA NIKHIL REDDY          |
| 58 | 19241A0158 | VELISHALA GAYATHRI            |
|    |            | VENKATA SIDDHARTHA RAJU       |
| 59 | 19241A0159 | VEGESNA                       |
| 60 | 19241A0160 | YASWANTH KURUVA               |

## **SECTION - B**

| S.No. | Roll No    | Name                    |
|-------|------------|-------------------------|
| 1     | 19241A0161 | ABDUL RAHEEM            |
| 2     | 19241A0162 | ANEMONI MURALI MANOHAR  |
| 3     | 19241A0163 | ASKANY HARISH SAGAR     |
| 4     | 19241A0164 | BODLA AKSHITH           |
| 5     | 19241A0165 | BURRA VAMSHI KRISHNA    |
| 6     | 19241A0166 | CHERLAKOLA AKHILA       |
| 7     | 19241A0167 | CHINTAPALLI VIKRAM      |
| 8     | 19241A0168 | CHIRRIBOYINA DHANYA     |
| 9     | 19241A0169 | D SREE MADHURI          |
| 10    | 19241A0170 | GADDAM SAHITHI          |
| 11    | 19241A0171 | GAJJALA SUKENDHAR REDDY |
| 12    | 19241A0172 | YASHASWI GANGAVARAM     |
| 13    | 19241A0173 | GINDHAM ADITYA KUMAR    |

|    |                          | T ==================================== |
|----|--------------------------|----------------------------------------|
| 14 | 19241A0174               | GUDHETI NARENDAR REDDY                 |
| 15 | 19241A0175               | GUMMADI SAI PRATEEK REDDY              |
| 16 | 19241A0176               | HANMAPUR DHEERAJ GOUD                  |
| 17 | 19241A0177               | JAVVAJI AISHWARYA                      |
| 18 | 19241A0178               | JULAPALLY NITHIN RAO                   |
| 19 | 19241A0179               | K NAVEEN                               |
| 20 | 19241A0180               | K RAJESHWARI                           |
| 21 | 19241A0181               | KACHAVA SURENDAR                       |
| 22 | 19241A0182               | KODATHALA INDU                         |
| 23 | 19241A0183               | KOTARU SRINIVASA VARAPRASAD            |
| 24 | 19241A0184               | MALOTH RAHUL                           |
| 25 | 19241A0185               | MATURI SATHVIK                         |
| 26 | 19241A0186               | MD ABDUL MAAJID                        |
| 27 | 19241A0187               | MEDARI DAYANA                          |
| 28 | 19241A0188               | NARSINGA SANDEEP                       |
| 29 | 19241A0189               | PALANATI ROHITH                        |
| 30 | 19241A0190               | PURALASETTY BHAVANA                    |
| 31 | 19241A0191               | RODDA MALAVIKA REDDY                   |
| 32 | 19241A0192               | SAPRAM NAGA SRILOWKYA MUKTHA           |
| 33 | 19241A0193               | SHAIK PARVEZ ANSARI                    |
| 34 | 19241A0194               | SIDDELA THARUN KUMAR                   |
| 35 | 19241A0195               | TALARI CHANDANA SREE                   |
| 36 | 19241A0196               | VALLEPU KALYAN                         |
| 37 | 19241A0197               | VRASHAB PATEL                          |
| 38 | 19241A0198               | YELLAVULA NARENDER                     |
| 39 | 19241A0199               | BADDELA SAI THARUN                     |
| 40 | 20245A0101               | Aamanchi Bowmi                         |
| 41 | 20245A0102               | Aviraboina Sai Chaithanya              |
| 42 | 20245A0103               | Bairy B S Anirudh                      |
| 43 | 20245A0104               | Daddu Tejasree                         |
| 44 | 20245A0105               | Dopathi Raviteja                       |
| 45 | 20245A0106               | Eruventi Niharika                      |
| 46 | 20245A0107               | Gaddamidi Aanil                        |
| 47 | 20245A0108               | Gandla Rishik Raj                      |
| 48 | 20245A0109               | Gone Naveen Kumar                      |
| 49 | 20245A0110               | Kota Vishal                            |
| 50 | 20245A0111               | Kummari Mahesh                         |
| 51 | 20245A0112               | Lakavath Anil                          |
| 52 | 20245A0113               | Madavaram Rohith                       |
| 53 | 20245A0114               | Mandala Akshitha                       |
| 54 | 20245A0115               | M Manjunath                            |
| 55 | 20245A0116               | Porandla Nababhushanam                 |
| 56 | 20245A0117               | Pulishetty Bhavani                     |
| 57 | 20245A0118               | Racha Kranthi Ranadeer                 |
| 58 | 20245A0119               | S Manoj Kumar                          |
| 59 | 20245A0120               | Samudrala Manideep                     |
| 60 | 20245A0121               | Sangepaga Goutham                      |
| 61 | 20245A0122               | Sodadasi Rahul                         |
| 62 | 20245A0122<br>20245A0123 | Vanga Harshith                         |
| 02 | 20273A0123               | vanga Harsinui                         |

| 63 | 20245A0124 | Choleti Vineetha           |  |
|----|------------|----------------------------|--|
| 64 | 20245A0125 | Gangula Grishma            |  |
| 65 | 20245A0126 | Bollampalli Sai Poojith    |  |
| 66 | 20245A0127 | Pamulapati Sumanth         |  |
| 67 | 20245A0128 | T Sanghamithra             |  |
| 68 | 20245A0129 | Abeda Akanksha             |  |
| 69 | 20245A0130 | Doppalapudi Ramvineeth Sai |  |
| 70 | 20245A0131 | Pilly Uday Kiran           |  |

| Signature of HOD | Signature of faculty |
|------------------|----------------------|
| Date:            | Date:                |



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### GUIDELINES TO STUDY THE COURSE/SUBJECT

Academic Year : 2021-22

Semester : I

Name of the Program: B.Tech Civil Engineering. Year: III Section: A & B

Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: Dr.T.Srinivas / Mr.K.VEERA BABU Dept.: Civil Engineering

Designation: Professor / Assistant Professor

#### **Guidelines to students:**

Guidelines to study the course: Design of Concrete Structures-I

The course helps the students to learn and understand about the design of various structural elements of buildings by using Limit state method. The course makes the students to understand the design procedure of Beams, Slabs, Columns, Footings, Stairs and Canopy. It also makes the students to understand the design of beams and slabs for Limit state of serviceability.

The students should have the prerequisites:

- Knowledge of Concrete and Steel.
- Knowledge of various structural elements of Buildings.

#### Where will this subject help?

- Useful in knowing the difference between Limit State method and Working Stress method.
- Useful in determining the area of steel, spacing between the bars and size of elements such as beams, slabs, footings, stairs and canopy for the given moment/Loads.
- Useful in determining the capacity of structural elements for the given size of section and area of steel.

#### **Books/Material**

- 1. Limit state design of Reinforced Concrete by P.C. Varghese, Printice Hall of India, New Delhi
- 2. Reinforced Concrete Design by N.Krishna Raju and R.N.Pranesh, New Age International Publishers, New Delhi.

3. Reinforced Concrete Design by S.Unnikrishna Pillai & Devada Menon, Tata Mc.Graw Hill, NewDelhi.

#### **Reference Books**

- 1. Fundamentals of Reinforced Concrete Design by M.L.Gambhir, Printice Hall of India, New Delhi.
- 2. Limit State Design by B.C.Punmia, Ashok Kumar Jain and Arun Kumar Jain, Laxmi Publications Pvt.Ltd., New Delhi.

#### Web Sites

<u>www.nptel.ac.in/course/civil</u> engineering/design of reinforced concrete structures <u>www.google.com</u>

#### **Course Design and Delivery System (CDD):**

- The Course syllabus is written into number of learning objectives and outcomes.
- These learning objectives and outcomes will be achieved through lectures, assessments, assignments, experiments in the laboratory, projects, seminars, presentations, etc.
- Every student will be given an assessment plan, criteria for assessment, scheme of evaluation and grading method.
- The Learning Process will be carried out through assessments of Knowledge, Skills and Attitude by various methods and the students will be given guidance to refer to the text books, reference books, journals, etc.

#### The faculty be able to –

- Understand the principles of Learning
- Understand the psychology of students
- Develop instructional objectives for a given topic
- Prepare course, unit and lesson plans
- Understand different methods of teaching and learning
- Use appropriate teaching and learning aids
- Plan and deliver lectures effectively
- Provide feedback to students using various methods of Assessments and tools of Evaluation
- Act as a guide, advisor, counselor, facilitator, motivator and not just as a teacher alone

| Signature of HOD | Signature of faculty |
|------------------|----------------------|
| Date:            | Date:                |



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **COURSE SCHEDULE**

Academic Year : 2021-22

Semester : I

Name of the Program: B.Tech Civil Engineering Year: III Section: A

Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: Dr.T.Srinivas / Mr.K.VEERA BABU Dept.: Civil Engineering

Designation: Professor / Assistant Professor

The Schedule for the whole Course / Subject is:

| The Beneda |                                                                   | Duration | Total No. |         |
|------------|-------------------------------------------------------------------|----------|-----------|---------|
| S. No.     | Description                                                       | From     | То        | of      |
|            |                                                                   |          |           | Periods |
| 1.         | UNIT-1<br>Concepts of R.C.Design                                  | 18/08/21 | 16/09/21  | 8       |
| 2.         | <b>UNIT-II</b> Analysis and Design of Beams                       | 18/09/21 | 06/10/21  | 13      |
| 3.         | UNIT-III  Design of Slabs, Design of Stair case and  Canopy       | 06/10/21 | 04/11/21  | 13      |
| 4.         | <b>UNIT-IV</b> Design of Columns                                  | 04/11/21 | 17/11/21  | 8       |
| 5.         | UNIT-V Design of Foundation, Limit State Design of Serviceability | 17/11/21 | 10/12/21  | 13      |

Total No. of Instructional periods available for the course: <u>55</u> Hours / Periods

| Signature of H.O.D | Signature of faculty |
|--------------------|----------------------|
| Date:              | Date:                |



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **COURSE SCHEDULE**

Semester : I

Name of the Program: B.Tech Civil Engineering Year: III Section: B

Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: Dr.T.Srinivas / Mr.K.VEERA BABU Dept.: Civil Engineering

Designation: Professor / Assistant Professor

The Schedule for the whole Course / Subject is:

|        |                                                                   | Duration (Date) |          | Total No. |
|--------|-------------------------------------------------------------------|-----------------|----------|-----------|
| S. No. | Description                                                       | From            | То       | of        |
|        |                                                                   |                 |          | Periods   |
| 1.     | UNIT-1<br>Concepts of R.C.Design                                  | 17/08/21        | 01/09/21 | 8         |
| 2.     | <b>UNIT-II</b> Analysis and Design of Beams                       | 04/09/21        | 28/09/21 | 13        |
| 3.     | UNIT-III  Design of Slabs, Design of Stair case and  Canopy       | 29/09/21        | 27/10/21 | 13        |
| 4.     | <b>UNIT-IV</b> Design of Columns                                  | 30/10/21        | 13/11/21 | 8         |
| 5.     | UNIT-V Design of Foundation, Limit State Design of Serviceability | 16/11/21        | 08/12/21 | 13        |

Total No. of Instructional periods available for the course: <u>55</u> Hours / Periods

| Signature of H.O.D | Signature of faculty |
|--------------------|----------------------|
| Date:              | Date:                |



Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

### SCHEDULE OF INSTRUCTIONS COURSE PLAN

Academic Year : 2021-22

Semester : I

Name of the Program: B.Tech Civil Engineering Year: III Section: A

Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: Dr. T.Srinivas / Mr. K.VEERA BABU Dept.: Civil Engineering

| Unit<br>No. | Lesson<br>No. | Date     | No.of<br>periods | Topics/Sub-Topics                           | Objectives &<br>Outcomes<br>Nos. | References                                                                     |
|-------------|---------------|----------|------------------|---------------------------------------------|----------------------------------|--------------------------------------------------------------------------------|
|             | 1             | 18/08/21 | 1                | General Introduction about subject          | CobNos:1<br>CoNos:1              | Reinforced Concrete<br>Limit State Design by<br>(a)DrAK Jain<br>(b) IS456-2000 |
|             | 2             | 19/08/21 | 1                | Limit state method                          | CobNos:1<br>CoNos:1              | RC-LSD-AKJ,PPN:69                                                              |
|             | 3             | 21/08/21 | 1                | Material stress strain curves               | CobNos:1<br>CoNos:1              | RC-LSD-<br>AKJ,PPN:79-81                                                       |
| I           | 4             | 26/08/21 | 1                | Safety factors,<br>Characteristic<br>values | CobNos:1<br>CoNos:1              | RC-LSD-AKJ,PPN:77                                                              |
|             | 5             | 01/09/21 | 1                | Stress block parameters                     | CobNos:1<br>CoNos:1              | RC-LSD-AKJ,PPN:80                                                              |
|             | 6             | 15/09/21 | 1                | IS 456-2000 Uses                            | CobNos:1<br>CoNos:1              | IS456                                                                          |
|             | 7             | 15/09/21 | 1                | Working stress<br>method                    | CobNos:1<br>CoNos:1              | RC-LSD-AKJ,PPN:60                                                              |
|             | 8             | 16/09/21 | 1                | Comparison of LSD                           | CobNos:1                         | RC-LSD-                                                                        |

|     |    |          |   | with WSM                                       | CoNos:1           | AKJ,PPN:60&64                |
|-----|----|----------|---|------------------------------------------------|-------------------|------------------------------|
|     | 9  | 18/09/21 | 1 | Analysis and design of singly reinforced beams | Cobs:2<br>CoNos:2 | RC-LSD-<br>AKJ,PPN:87-96     |
|     | 10 | 18/09/21 | 1 | Problems solving                               | Cobs:2<br>Cos: 2  | RC-LSD-<br>AKJ,PPN:99-108    |
|     | 11 | 20/09/21 | 1 | Analysis and design of doubly reinforced beams | Cobs:2<br>Cos: 2  | RC-LSD-<br>AKJ,PPN:100 – 113 |
|     | 12 | 20/09/21 | 1 | Problems solving                               | Cobs:2<br>CoNos:2 | RC-LSD-<br>AKJ,PPN:114-119   |
|     | 13 | 21/09/21 | 1 | Analysis and Design of T Beams                 | Cobs: 2<br>Cos: 2 | RC-LSD-<br>AKJ,PPN:121-126   |
|     | 14 | 22/09/21 | 1 | Problems solving                               | Cobs: 2<br>Cos: 2 | RC-LSD-<br>AKJ,PPN:127-132   |
| II  | 15 | 23/09/21 | 1 | Analysis and Design of L Beams                 | Cobs: 2<br>Cos: 2 | RC-LSD-<br>AKJ,PPN:121-126   |
|     | 16 | 25/09/21 | 1 | Design of beam section for shear               | Cobs: 2<br>Cos: 2 | RC-LSD-<br>AKJ,PPN:134-144   |
|     | 17 | 27/09/21 | 1 | Problems solving                               | Cobs: 2<br>Cos: 2 | RC-LSD-<br>AKJ,PPN:145-155   |
|     | 18 | 29/09/21 | 1 | Design of beam section for Torsion             | Cobs: 2<br>Cos: 2 | RC-LSD-<br>AKJ,PPN:251-256   |
|     | 19 | 01/10/21 | 1 | Concept of Bond<br>and Anchorage               | Cobs: 2<br>Cos: 2 | RC-LSD-<br>AKJ,PPN:156-160   |
|     | 20 | 04/10/21 | 1 | Development length and Detailing               | Cobs: 2<br>Cos: 2 | RC-LSD-<br>AKJ,PPN:165-178   |
|     | 21 | 06/10/21 | 1 | Problems solving                               | Cobs: 2<br>Cos: 2 | RC-LSD-<br>AKJ,PPN:160-162   |
|     | 22 | 06/10/21 | 1 | Introduction of slabs                          | Cobs: 3<br>Cos: 3 | RC-LSD-<br>AKJ,PPN:287       |
|     | 23 | 07/10/21 | 1 | Design of one way slab                         | Cobs: 3<br>Cos: 3 | RC-LSD-<br>AKJ,PPN:288       |
| III | 24 | 09/10/21 | 1 | Problems solving                               | Cobs: 3<br>Cos: 3 | RC-LSD-<br>AKJ,PPN:289       |
|     | 25 | 09/10/21 | 1 | Problems solving                               | Cobs: 3<br>Cos: 3 | RC-LSD-<br>AKJ,PPN:290-291   |
| -   | 26 | 23/10/21 | 1 | Design of Two way<br>slab                      | Cobs: 3<br>Cos: 3 | RC-LSD-<br>AKJ,PPN:295-303   |

|    |            | 27/10/21    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cobs: 3 | RC-LSD-         |
|----|------------|-------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|
|    | 27         | 27/10/21    | 1         | Problems solving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cos: 3  | AKJ,PPN:303-310 |
|    | 20         | 07/10/01    | 1         | Design of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cobs: 3 | RC-LSD-         |
|    | 28         | 27/10/21    | 1         | continuous slab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cos: 3  | AKJ,PPN:292-293 |
|    | 20         | 29/10/21    | 1         | Duo blama as luina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cobs: 3 | RC-LSD-         |
|    | 29         | 28/10/21    | 1         | Problems solving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cos: 3  | AKJ,PPN:293-294 |
|    | 30         | 29/10/21    | 1         | Design of Stair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cobs: 3 | RC-LSD-         |
|    | 30         | 29/10/21    | 1         | case- Longitudinal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cos: 3  | AKJ,PPN:239-240 |
|    | 31         | 03/11/21    | 1         | Problems solving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cobs: 3 | RC-LSD-         |
|    | 31         | 03/11/21    | 1         | Froblems solving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cos: 3  | AKJ,PPN:249     |
|    |            |             |           | Design of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cobs: 3 | RC-LSD-         |
|    | 32         | 03/11/21    | 1         | Doglegged stair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cos: 3  | AKJ,PPN:241-242 |
|    |            |             |           | case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | ,               |
|    | 33         | 03/11/21    | 1         | Design of open well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cobs: 3 | RC-LSD-         |
|    | 33         | 03/11/21    |           | stair case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cos: 3  | AKJ,PPN:245-246 |
|    |            |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cobs: 3 | DRCS by         |
|    | 34         | 04/11/21    | 1         | Design of Canopy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cos: 3  | S.Ramamrutham,  |
|    |            |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | PPN:485         |
|    | 35         | 04/11/21    | 1         | Design of axial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cobs: 4 | RC-LSD-         |
|    |            | 0 1/ 11/ 21 |           | columns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cos:4   | AKJ,PPN:400-410 |
|    | 36         | 08/11/21    | 1         | Problems solving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cobs:4  | RC-LSD-         |
|    |            |             |           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cos:4   | AKJ,PPN:411-415 |
|    | 37         | 08/11/21    | 1         | Design of uniaxial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cobs:4  | RC-LSD-         |
|    | 37         | 0 0,,       |           | bending columns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cos:4   | AKJ,PPN:415-422 |
|    | 38         | 09/11/21    | 1         | Problems solving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cobs:4  | RC-LSD-         |
| IV |            |             |           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cos:4   | AKJ,PPN:422-427 |
|    | 39         | 09/11/21    | 1         | Problems solving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cobs:4  | RC-LSD-         |
|    |            |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cos:4   | AKJ,PPN:428-435 |
|    | 40         | 40 10/11/21 | 0/11/21 1 | Design of biaxial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cobs:4  | RC-LSD-         |
|    |            |             |           | bending columns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cos:4   | AKJ,PPN:436-442 |
|    | 41         | 12/11/21    |           | Problems solving  Problems solving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cobs:4  | RC-LSD-         |
|    |            | 12,11,21    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cos:4   | AKJ,PPN:463-466 |
|    | 42         | 17/11/21    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cobs:4  | RC-LSD-         |
|    |            |             |           | , and the second | Cos:4   | AKJ,PPN:463-466 |
|    | 42         | 17/11/21    | 1         | Introduction about                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cobs:5  | RC-LSD-         |
|    | . <u> </u> |             |           | footings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cos:5   | AKJ,PPN:466-480 |
| V  | 43         | 24/11/21    | /21 1     | Design of isolated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cobs:5  | RC-LSD-         |
|    |            |             |           | square footing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cos:5   | AKJ,PPN:480-487 |
|    | 44         | 24/11/21    | 1         | Design of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cobs:5  | RC-LSD-         |
|    |            |             |           | rectangular footing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cos:5   | AKJ,PPN:466-480 |

| 45             | 26/11/21 | 1 | Problems solving   | Cobs:5   | RC-LSD-         |
|----------------|----------|---|--------------------|----------|-----------------|
| 43             | 20/11/21 |   | Problems solving   | Cos:5    | AKJ,PPN:480-487 |
| 46             | 01/12/21 | 1 | Design of circular | Cobs:5   | RC-LSD-         |
| 40             | 01/12/21 | 1 | footing            | Cos:5    | AKJ,PPN:466-480 |
| 47             | 01/12/21 | 1 | Design of combined | Cobs:5   | RC-LSD-         |
| 47             | 01/12/21 | 1 | footings           | Cos:5    | AKJ,PPN:488     |
|                |          |   | Introduction about | CobNos:5 | RC-LSD-         |
| 48             | 02/12/21 | 1 | Limit state design | CoNos:5  | AKJ,PPN:185     |
|                |          |   | for serviceability | CONOS.3  | AKJ,11 N.105    |
| 49             | 03/12/21 | 1 | Limit state design | CobNos:5 | RC-LSD-         |
| 47             |          |   | for deflection     | CoNos:5  | AKJ,PPN:186     |
| 50             | 04/12/21 | 1 | Limit state design | CobNos:5 | RC-LSD-         |
| 30             |          |   | for creep.         | CoNos:5  | AKJ,PPN:196-197 |
| 51             | 04/12/21 | 1 | Limit state design | CobNos:5 | RC-LSD-         |
| 31             |          |   | for vibration.     | CoNos:5  | AKJ,PPN:189-193 |
| 52             | 08/12/21 | 1 | Problems solving   | CobNos:5 | RC-LSD-         |
| 32             |          | 1 | 1 Tooleins solving | CoNos:5  | AKJ,PPN:193-195 |
| 53             | 08/12/21 | 1 | Problems solving   | CobNos:5 | RC-LSD-         |
| 33             | 06/12/21 | 1 | 1 Tooleins solving | CoNos:5  | AKJ,PPN:197     |
| 54             | 09/12/21 | 1 | Problems solving   | CobNos:5 | RC-LSD-         |
| J <del>4</del> | 09/12/21 | 1 | 1 Tooleins solving | CoNos:5  | AKJ,PPN:198     |
| 55             | 10/12/21 | 1 | Problems solving   | CobNos:5 | RC-LSD-         |
|                | 10/12/21 | 1 | 1 Tooleins solving | CoNos:5  | AKJ,PPN:199     |

| Signature of H.O.D | Signature of faculty |  |  |  |
|--------------------|----------------------|--|--|--|
|                    |                      |  |  |  |
| Date:              | Date:                |  |  |  |

1. Ensure that all topics specified in the course are mentioned. Note:

2. Additional topicscovered, if any, may also be specified in bold3. Mention the corresponding course objective and out come numbers against each topic.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### SCHEDULE OF INSTRUCTIONS COURSE PLAN

Academic Year : 2021-22

Semester : I

Name of the Program: B.Tech Civil Engineering Year: III Section: B

Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: Dr. T.Srinivas / Mr.K. VEERA BABU Dept.: Civil Engineering

| S.No. | Date       | Unit No. | Session<br>Duration | Topics                                                                                          |
|-------|------------|----------|---------------------|-------------------------------------------------------------------------------------------------|
| 1     | 17/08/2021 | 1        | 1                   | Limit state method, characteristic values and safety factors, Material stress strain curves.    |
| 2     | 18/08/2021 | 1        | 1                   | Material stress strain curves.                                                                  |
| 3     | 21/08/2021 | 1        | 1                   | Loads and its combinations                                                                      |
| 4     | 24/08/2021 | 1        | 1                   | Modes of failures of flexural members,                                                          |
| 5     | 25/08/2021 | 1        | 1                   | Difference among working stress, ultimate load and limit state methods.                         |
| 6     | 28/08/2021 | 1        | 1                   | Stress block parameters of singly reinforced beams                                              |
| 7     | 31/08/2021 | 1        | 1                   | Stress block parameters of singly reinforced beams                                              |
| 8     | 01/09/2021 | 1        | 1                   | Problems                                                                                        |
| 9     | 04/09/2021 | 2        | 1                   | Concepts on analysis and design of singly reinforced beams, Problems on singly reinforced beams |
| 10    | 04/09/2021 | 2        | 1                   | Concepts on analysis and design of doubly reinforced beams                                      |

| 11 | 07/09/2021 | 2 | 1 | Problems on design of doubly reinforced beams                      |
|----|------------|---|---|--------------------------------------------------------------------|
| 12 | 07/09/2021 | 2 | 1 | Problems on doubly reinforced beams                                |
| 13 | 08/09/2021 | 2 | 1 | Concepts on M.R of singly reinforced and doubly reinforced T Beams |
| 14 | 11/09/2021 | 2 | 1 | Problems on M.R of singly reinforced and doubly reinforced T Beams |
| 15 | 14/09/2021 | 2 | 1 | Design of singly reinforced and doubly reinforced T Beams          |
| 16 | 15/09/2021 | 2 | 1 | M.R of L-Beams                                                     |
| 17 | 18/09/2021 | 2 | 1 | Design of L-Beams                                                  |
| 18 | 21/09/2021 | 2 | 1 | Design of beam section for shear                                   |
| 19 | 22/09/2021 | 2 | 1 | Design of beam section for torsion                                 |
| 20 | 25/09/2021 | 2 | 1 | Design Problems on T Beams                                         |
| 21 | 28/09/2021 | 2 | 1 | Concept of bond and anchorage length with problems                 |
| 22 | 29/09/2021 | 3 | 1 | Introduction of slabs                                              |
| 23 | 05/10/2021 | 3 | 1 | Introduction of slabs and design of one way slab                   |
| 24 | 06/10/2021 | 3 | 1 | Design of two way slabs                                            |
| 25 | 09/10/2021 | 3 | 1 | Design of two way slabs                                            |
| 26 | 12/10/2021 | 3 | 1 | Design of continuous slab                                          |
| 27 | 13/10/2021 | 3 | 1 | Design of dog legged stair case                                    |
| 28 | 16/10/2021 | 3 | 1 | Design of dog legged stair case                                    |
| 29 | 20/10/2021 | 3 | 1 | Design Problem on Canopy                                           |
| 30 | 23/10/2021 | 3 | 1 | Design Problem on Canopy                                           |
| 31 | 26/10/2021 | 3 | 1 | Design of Flat Slab                                                |
| 32 | 26/10/2021 | 3 | 1 | Design of Flat Slab                                                |
| 33 | 27/10/2021 | 3 | 1 | Problems                                                           |

| 34 | 27/10/2021 | 3 | 1 | Problems                                                               |
|----|------------|---|---|------------------------------------------------------------------------|
| 35 | 30/10/2021 | 4 | 1 | Columns Concepts and Design of axial columns                           |
| 36 | 30/10/2021 | 4 | 1 | Design of uni-axial bending columns                                    |
| 37 | 02/11/2021 | 4 | 1 | Design of uni-axial bending columns                                    |
| 38 | 03/11/2021 | 4 | 1 | Design of biaxial bending columns                                      |
| 39 | 06/11/2021 | 4 | 1 | Design of biaxial bending columns                                      |
| 40 | 09/11/2021 | 4 | 1 | Problems on Uni-axial and Bi axial columns                             |
| 41 | 10/11/2021 | 4 | 1 | Problems on Uni-axial and Bi axial columns                             |
| 42 | 13/11/2021 | 4 | 1 | Design of long columns                                                 |
| 43 | 16/11/2021 | 5 | 1 | Introduction to footings                                               |
| 44 | 17/11/2021 | 5 | 1 | Introduction to footings and Design of isolated rectangle flat footing |
| 45 | 20/11/2021 | 5 | 1 | Design of isolated rectangle flat footing                              |
| 46 | 23/11/2021 | 5 | 1 | Design of square flat Footing                                          |
| 47 | 24/11/2021 | 5 | 1 | Design of square flat Footing                                          |
| 48 | 27/11/2021 | 5 | 1 | Design of square sloped footing                                        |
| 49 | 30/11/2021 | 5 | 1 | Design of square sloped footing                                        |
| 50 | 01/12/2021 | 5 | 1 | Design of combined footing                                             |
| 51 | 04/12/2021 | 5 | 1 | Limit state of serviceability and Problem on cracks                    |
| 52 | 07/12/2021 | 5 | 1 | Problem on deflection                                                  |
| 53 | 07/12/2021 | 5 | 1 | Problem on deflection.                                                 |
| 54 | 08/12/21   | 5 | 1 | Problem on deflection.                                                 |
| 55 | 08/12/21   | 5 | 1 | Revision                                                               |

| <b>d</b> . | $CII \cap D$ |  |
|------------|--------------|--|
| Signature  | 01 H.().I)   |  |

Signature of faculty

Date:



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22 Unit No: I

Semester : I

Name of the Program: B.Tech Civil Engineering Year: III Section: A

Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: Dr.T.Srinivas / Mr.K.VEERA BABU Dept.: Civil Engineering

Designation: Professor / Assistant Professor

| Lesson<br>No. | Date     | No. of<br>Periods | Topics / Sub - Topics                    | Objectives & Outcomes Nos. | Blooms<br>Taxonomy | References<br>(Text Book,<br>Journal)<br>Page Nos.:                            |
|---------------|----------|-------------------|------------------------------------------|----------------------------|--------------------|--------------------------------------------------------------------------------|
| 1.            | 18/08/21 | 1                 | General Introduction about subject       | CobNos:1<br>CoNos:1        | K2                 | Reinforced Concrete<br>Limit State Design<br>by (a)DrAK Jain<br>(b) IS456-2000 |
| 2.            | 19/08/21 | 1                 | Limit state method                       | CobNos:1<br>CoNos:1        | K2                 | RC-LSD-<br>AKJ,PPN:69                                                          |
| 3.            | 21/08/21 | 1                 | Material stress strain curves            | CobNos:1<br>CoNos:1        | K2                 | RC-LSD-<br>AKJ,PPN:79-81                                                       |
| 4.            | 26/08/21 | 1                 | Safety factors,<br>Characteristic values | CobNos:1<br>CoNos:1        | K2                 | RC-LSD-<br>AKJ,PPN:77                                                          |
| 5.            | 01/09/21 | 1                 | Stress block parameters                  | CobNos:1<br>CoNos:1        | К3                 | RC-LSD-<br>AKJ,PPN:80                                                          |
| 6.            | 15/09/21 | 1                 | IS 456-2000 Uses                         | CobNos:1<br>CoNos:1        | K3                 | IS456                                                                          |
| 7.            | 15/09/21 | 1                 | Working stress method                    | CobNos:1<br>CoNos:1        | K2                 | RC-LSD-<br>AKJ,PPN:60                                                          |
| 8.            | 16/09/21 | 1                 | Comparison of LSD with WSM               | CobNos:1<br>CoNos:1        | K2                 | RC-LSD-<br>AKJ,PPN:60&64                                                       |

Signature of HOD Date:

Signature of faculty

Date:



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

## SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22 Unit No: II

Semester : I

Name of the Program: B.Tech Civil Engineering Year: III Section: A

Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: Dr.T.Srinivas / Mr.K.VEERA BABU Dept.: Civil Engineering

| Lesson<br>No. | Date     | No. of<br>Periods | Topics / Sub - Topics                          | Objectives & Outcomes Nos. | Blooms<br>Taxonomy | References<br>(Text Book,<br>Journal)<br>Page Nos.: |
|---------------|----------|-------------------|------------------------------------------------|----------------------------|--------------------|-----------------------------------------------------|
| 1.            | 18/09/21 | 1                 | Analysis and design of singly reinforced beams | Cobs:2<br>CoNos:2          | K4                 | RC-LSD-<br>AKJ,PPN:87-96                            |
| 2.            | 18/09/21 | 1                 | Problems solving                               | Cobs:2<br>CoNos:2          | K5                 | RC-LSD-<br>AKJ,PPN:99-108                           |
| 3.            | 20/09/21 | 1                 | Analysis and design of doubly reinforced beams | Cobs:2<br>CoNos:2          | K4                 | RC-LSD-<br>AKJ,PPN:100 -<br>113                     |
| 4.            | 20/09/21 | 1                 | Problems solving                               | Cobs:2<br>CoNos:2          | K5                 | RC-LSD-<br>AKJ,PPN:114-<br>119                      |
| 5.            | 21/09/21 | 1                 | Design of T Beams                              | Cobs:2<br>CoNos:2          | K5                 | RC-LSD-<br>AKJ,PPN:121-<br>126                      |
| 6.            | 22/09/21 | 1                 | Problems solving                               | Cobs:2<br>CoNos:2          | K5                 | RC-LSD-<br>AKJ,PPN:127-<br>132                      |

|     | 23/09/21             | 1 | Design of L Beams      | Cobs:2            | K5   | RC-LSD-<br>AKJ,PPN:121- |
|-----|----------------------|---|------------------------|-------------------|------|-------------------------|
| 7.  | 23/03/21             | 1 |                        | CoNos:2           |      | 126                     |
|     |                      |   | Design of beam section | Cobs:2            | K5   | RC-LSD-                 |
| 8.  | 25/09/21             | 1 | for shear              | CoNos:2           | KS   | AKJ,PPN:134-            |
|     |                      |   |                        |                   |      | 144                     |
|     | <b>2 7 10 0 10 1</b> |   | Problems solving       | Cobs:2            | K5   | RC-LSD-                 |
| 9.  | 27/09/21             | 1 | 1 Toolems solving      | CoNos:2           | KS   | AKJ,PPN:145-            |
|     |                      |   |                        |                   |      | 155                     |
|     |                      |   | Design of beam section | Cobs:2            | W.F  | RC-LSD-                 |
| 10. | 29/09/21             | 1 | for Torsion            | CoNos:2           | K5   | AKJ,PPN:251-            |
| 10. |                      |   |                        | C01\0s.2          |      | 256                     |
| 1.1 |                      |   | Concept of Bond and    | C 1 2             | 77.5 | RC-LSD-                 |
| 11  | 01/10/21             | 1 | Anchorage              | Cobs:2<br>CoNos:2 | K5   | AKJ,PPN:257-            |
|     |                      |   | 8                      | Conos:2           |      | 260                     |
|     |                      |   | Development length     | ~                 |      | RC-LSD-                 |
| 12  | 04/10/21             | 1 | and Detailing          | Cobs:2            | K3   | AKJ,PPN:156-            |
|     |                      |   |                        | CoNos:2           |      | 160                     |
| 10  |                      |   | 5 11 11                | C 1 2             |      | RC-LSD-                 |
| 13  | 06/10/21             | 1 | Problems solving       | Cobs:2            | K5   | AKJ,PPN:160-            |
|     |                      |   |                        | CoNos:2           |      | 162                     |

| Signature of HOD | Signature of faculty |
|------------------|----------------------|
| Date:            | Date:                |



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22 Unit No: III

Semester : I

Name of the Program: B.Tech Civil Engineering Year: III Section: A

Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: Dr.T.Srinivas / Mr.K.VEERA BABU Dept.: Civil Engineering

| Lesson<br>No. | Date     | No. of<br>Periods | Topics / Sub - Topics                 | Objectives & Outcomes | Blooms<br>Taxonomy | References<br>(Text Book,<br>Journal) |
|---------------|----------|-------------------|---------------------------------------|-----------------------|--------------------|---------------------------------------|
| 1.            | 06/10/21 | 1                 | Introduction of slabs                 | Nos. Cobs:3 Cos: 3    | K2                 | Page Nos.:<br>RC-LSD-<br>AKJ,PPN:287  |
| 2.            | 07/10/21 | 1                 | Design of one way slab                | Cobs:3<br>Cos: 3      | K5                 | RC-LSD-<br>AKJ,PPN:288                |
| 3.            | 09/10/21 | 1                 | Problems solving                      | Cobs:3<br>Cos:3       | K5                 | RC-LSD-<br>AKJ,PPN:289                |
| 4.            | 09/10/21 | 1                 | Problems solving                      | Cobs:3<br>Cos: 3      | K5                 | RC-LSD-<br>AKJ,PPN:290-291            |
| 5.            | 23/10/21 | 1                 | Design of Two way slab                | Cobs:3<br>Cos: 3      | K5                 | RC-LSD-<br>AKJ,PPN:295-303            |
| 6.            | 27/10/21 | 1                 | Problems solving                      | Cobs:3<br>Cos: 3      | K5                 | RC-LSD-<br>AKJ,PPN:303-310            |
| 7.            | 27/10/21 | 1                 | Design of continuous slab             | Cobs:3<br>Cos: 3      | K5                 | RC-LSD-<br>AKJ,PPN:292-293            |
| 8.            | 28/10/21 | 1                 | Problems solving                      | Cobs:3<br>Cos: 3      | K5                 | RC-LSD-<br>AKJ,PPN:293-294            |
| 9.            | 29/10/21 | 1                 | Design of Stair case-<br>Longitudinal | Cobs:3<br>Cos: 3      | K5                 | RC-LSD-<br>AKJ,PPN:239-240            |

| 10. | 03/11/21 | 1 | Problems solving               | Cobs:3<br>Cos: 3 | K5 | RC-LSD-<br>AKJ,PPN:249     |
|-----|----------|---|--------------------------------|------------------|----|----------------------------|
| 11  | 03/11/21 | 1 | Design of Doglegged stair case | Cobs:3<br>Cos: 3 | K5 | RC-LSD-<br>AKJ,PPN:241-242 |
| 12  | 03/11/21 | 1 | Design of open well stair case | Cobs:3<br>Cos: 3 | K5 | RC-LSD-<br>AKJ,PPN:243-244 |
| 13  | 04/11/21 | 1 | Design of Canopy               | Cobs:3<br>Cos: 3 | K5 | RC-LSD-<br>AKJ,PPN:245-246 |

| Signature of HOD | Signature of faculty |
|------------------|----------------------|
| Date:            | Date:                |
| •                |                      |



Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

### SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22 Unit No: IV

Semester : I

Name of the Program: B.Tech Civil Engineering Year: III Section: A

Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: Dr. T.Srinivas / Mr.K.VEERA BABU Dept.: Civil Engineering

| Lesson<br>No. | Date     | No. of<br>Periods | Topics / Sub - Topics              | Objectives & Outcomes Nos. | Blooms<br>Taxonomy | References<br>(Text Book,<br>Journal)<br>Page Nos.: |
|---------------|----------|-------------------|------------------------------------|----------------------------|--------------------|-----------------------------------------------------|
| 1.            | 04/11/21 | 1                 | Design of axial columns            | Cobs: 4<br>Cos:4           | K5                 | RC-LSD-<br>AKJ,PPN:400-410                          |
| 2.            | 08/11/21 | 1                 | Problems solving                   | Cobs: 4<br>Cos:4           | K5                 | RC-LSD-<br>AKJ,PPN:411-415                          |
| 3.            | 08/11/21 | 1                 | Design of uniaxial bending columns | Cobs: 4<br>Cos:4           | K5                 | RC-LSD-<br>AKJ,PPN:415-422                          |
| 4.            | 09/11/21 | 1                 | Problems solving                   | Cobs: 4<br>Cos:4           | K5                 | RC-LSD-<br>AKJ,PPN:422-427                          |
| 5.            | 09/11/21 | 1                 | Problems solving                   | Cobs: 4<br>Cos:4           | K5                 | RC-LSD-<br>AKJ,PPN:428-435                          |
| 6.            | 10/11/21 | 1                 | Design of biaxial bending columns  | Cobs: 4<br>Cos:4           | K5                 | RC-LSD-<br>AKJ,PPN:436-442                          |
| 7.            | 12/11/21 | 1                 | Introduction about footings        | Cobs: 4<br>Cos:4           | K2                 | RC-LSD-<br>AKJ,PPN:463-466                          |
| 8.            | 17/11/21 | 1                 | Design of isolated square footing  | Cobs: 4<br>Cos:4           | K5                 | RC-LSD-<br>AKJ,PPN:466-480                          |

| Signature of HOD | Signature of faculty |
|------------------|----------------------|
| Date:            | Date:                |



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

## SCHEDULE OF INSTRUCTIONS UNIT PLAN

Academic Year : 2021-22 Unit No: V

Semester : I

Name of the Program: B.Tech Civil Engineering Year: III Section: A

Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: Dr.T.Srinivas / Mr.K.VEERA BABU Dept.: Civil Engineering

| Lesson<br>No. | Date     | No. of<br>Periods | Topics / Sub - Topics             | Objectives & Outcomes Nos. | Blooms<br>Taxonomy | References<br>(Text Book,<br>Journal)<br>Page Nos.: |
|---------------|----------|-------------------|-----------------------------------|----------------------------|--------------------|-----------------------------------------------------|
| 1.            | 17/11/21 | 1                 | Introduction about footings       | Cobs: 5<br>Cos:5           | К3                 | RC-LSD-<br>AKJ,PPN:480-487                          |
| 2.            | 24/11/21 | 1                 | Design of isolated square footing | Cobs:5<br>Cos:5            | K5                 | RC-LSD-<br>AKJ,PPN:466-480                          |
| 3.            | 24/11/21 | 1                 | Design of rectangular footing     | Cobs: 5<br>Cos:5           | K5                 | RC-LSD-<br>AKJ,PPN:480-487                          |
| 4.            | 26/11/21 | 1                 | Problems solving                  | Cobs: 5<br>Cos:5           | K5                 | RC-LSD-<br>AKJ,PPN:466-480                          |
| 5.            | 01/12/21 | 1                 | Design of circular footing        | Cobs: 5<br>Cos:5           | K5                 | RC-LSD-<br>AKJ,PPN:480-487                          |
| 6.            | 01/12/21 | 1                 | Design of combined footings       | Cobs: 5<br>Cos:5           | K5                 | RC-LSD-<br>AKJ,PPN:185                              |
| 7.            | 02/12/21 | 1                 | Limit state design for deflection | Cobs: 5<br>Cos:5           | K4                 | RC-LSD-<br>AKJ,PPN:186                              |
| 8.            | 03/12/21 | 1                 | Limit state design for cracking   | Cobs: 5<br>Cos:5           | K4                 | RC-LSD-<br>AKJ,PPN:196-197                          |
| 9.            | 04/12/21 | 1                 | Problems solving                  | Cobs: 5<br>Cos:5           | K5                 | RC-LSD-<br>AKJ,PPN:189-193                          |

| 10.        | 04/12/21     | 1          | Problems solving  | Cobs: 5 | K5  | RC-LSD-         |
|------------|--------------|------------|-------------------|---------|-----|-----------------|
| 10.        | 04/12/21     | '1   1     | Froblems solving  | Cos:5   | KJ  | AKJ,PPN:193-195 |
| 11.        | 08/12/21     | 1          | Problems solving  | Cobs: 5 | K5  | RC-LSD-         |
| 11.        | 11. 00/12/21 | 1 FIOU     | Problems solving  | Cos:5   | K.S | AKJ,PPN:197     |
| 12.        | 09/12/21     | 1          | Problems solving  | Cobs: 5 | K5  | RC-LSD-         |
| 12.        | 07/12/21     | 1          | riodienis solving | Cos:5   | N.J | AKJ,PPN:198     |
| 13.        | 10/12/21     | 1          | Problems solving  | Cobs: 5 | V.5 | RC-LSD-         |
| 13. 10/12/ | 10/12/21     | 10/12/21 1 | Froblems solving  | Cos:5   | K5  | AKJ,PPN:199     |

| Signature of HOD | Signature of faculty |
|------------------|----------------------|
| Date:            | Date:                |



Bachupally, Kukatpally, Hyderabad - 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                | : 2021-22                  |                  |                          |
|------------------------------|----------------------------|------------------|--------------------------|
| Semester                     | : I                        |                  |                          |
| Name of the Program: B.T     | ech Civil Engineering      | Year: III        | Section: A               |
| Course/Subject: Design of    | Concrete Structures-I      |                  | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T    | .Srinivas / Mr.K.VEER      | A BABU           | Dept.: Civil Engineering |
| Designation: Professor / A   | ssistant Professor         |                  |                          |
| Lesson No: 1                 | Du                         | ration of Lesson | n: <u>1hr</u>            |
| Lesson Title: General Introd | duction about subject      |                  |                          |
| INSTRUCTIONAL/LESS           | ON OBJECTIVES:             |                  |                          |
| On completion of this less   | on the student shall be a  | ble to:          |                          |
| 1. Discuss about the impor   | tance of this subject in c | civil engineerin | g.                       |
| 2. Explain about different   | elements of RCC frame.     |                  |                          |
| TEACHING AIDS: White         | e board, Marker pens an    | d Code book.     |                          |
| Sub topics                   |                            |                  |                          |
| Grade of concrete            |                            |                  |                          |
| Grade of steel               |                            |                  |                          |
| Beams, slabs, columns a      | and footings               |                  |                          |
|                              |                            |                  |                          |

Assignment / Questions: 1.Indicate the data required for designing structural element?

2. Explain the various structural elements of an RCC building?



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                             | : 2021-22               |                  |                          |
|-----------------------------------------------------------|-------------------------|------------------|--------------------------|
| Semester                                                  | : I                     |                  |                          |
| Name of the Program: B.Tec                                | ch Civil Engineering    | Year: III        | Section: A               |
| Course/Subject: Design of C                               | oncrete Structures-I    |                  | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.S                               | rinivas / Mr.K.VEER     | A BABU           | Dept.: Civil Engineering |
| Designation: Professor / Ass                              | istant Professor        |                  |                          |
| Lesson No: 2                                              | Dur                     | ration of Lesson | ı: <u>1hr</u>            |
| Lesson Title: Limit state meth                            | od                      |                  |                          |
| INSTRUCTIONAL/LESSO                                       | N OBJECTIVES:           |                  |                          |
| On completion of this lesson 1. Express the importance of |                         | ble to:          |                          |
| 2. Express different Limit sta                            | te methods.             |                  |                          |
| 3. Discuss the assumptions c                              | onsidered for Limit sta | te method        |                          |
| TEACHING AIDS: White b                                    | ooard, Marker pens and  | d Code book      |                          |
| TEACHING POINTS :                                         |                         |                  |                          |
| Sub topics Limit state method of collap                   | ose                     |                  |                          |
| Limit state method of compr                               | ession                  |                  |                          |
| Limit state method of service                             | eability                |                  |                          |
|                                                           |                         |                  |                          |

Assignment / Questions: 1.Describe Limit state method.

2. Discuss about the various Limit state methods.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                               | : 2021-22                    |                 |                          |  |  |  |
|-------------------------------------------------------------|------------------------------|-----------------|--------------------------|--|--|--|
| Semester                                                    | : I                          |                 |                          |  |  |  |
| Name of the Program: B.Tecl                                 | n Civil Engineering          | Year: III       | Section: A               |  |  |  |
| Course/Subject: Design of Co                                | oncrete Structures-I         |                 | Course Code: GR18A3003   |  |  |  |
| Name of the Faculty: Dr.T.Sr                                | rinivas / Mr.K.VEER <i>A</i> | A BABU          | Dept.: Civil Engineering |  |  |  |
| Designation: Professor / Assi                               | stant Professor              |                 |                          |  |  |  |
| Lesson No: 3                                                | Dur                          | ation of Lesson | : <u>1hr</u>             |  |  |  |
| Lesson Title: Material stress s                             | train curves                 |                 |                          |  |  |  |
| INSTRUCTIONAL/LESSON                                        | OBJECTIVES:                  |                 |                          |  |  |  |
| On completion of this lesson                                | the student shall be at      | ole to:         |                          |  |  |  |
| 1. Explain the importance of Material stress strain curves. |                              |                 |                          |  |  |  |
| 2. Discuss about stress strain c                            | urve for concrete.           |                 |                          |  |  |  |
| 3. Discuss about stress strain c                            | urve for steel.              |                 |                          |  |  |  |
| TEACHING AIDS: White be                                     | oard, Marker pens and        | d Code book     |                          |  |  |  |
| TEACHING POINTS :                                           |                              |                 |                          |  |  |  |
| Sub topics<br>stress strain curve for conc                  | rete                         |                 |                          |  |  |  |
| stress strain curve for steel                               |                              |                 |                          |  |  |  |
|                                                             |                              |                 |                          |  |  |  |

 $Assignment \ / \ Questions: \ 1. Interpret \ stress \ strain \ curve \ for \ concrete.$ 

2. Interpret stress strain curve for steel.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                       | : 2021-22                  |                    |                          |
|-----------------------------------------------------|----------------------------|--------------------|--------------------------|
| Semester                                            | : I                        |                    |                          |
| Name of the Program: B.Tech                         | Civil Engineering          | Year: III          | Section: A               |
| Course/Subject: Design of Co                        | ncrete Structures-I        |                    | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.Sri                       | nivas / Mr.K.VEERA         | BABU               | Dept.: Civil Engineering |
| Designation: Professor / Assis                      | tant Professor             |                    |                          |
| Lesson No: 4                                        | Dura                       | ation of Lesson    | : <u>1hr</u>             |
| Lesson Title: Safety factors, Ch                    | aracteristic values        |                    |                          |
| INSTRUCTIONAL/LESSON On completion of this lesson t |                            | ele to:            |                          |
| 1. Discuss the importance of p                      | partial safety factors and | l Characteristic v | alues.                   |
| 2. Discuss about Characteristic                     | values of strength.        |                    |                          |
| 3. Discuss about Characteristic                     | values of loads.           |                    |                          |
| TEACHING AIDS: White bo                             | oard, Marker pens and      | Code book          |                          |
| TEACHING POINTS :                                   |                            |                    |                          |
| Sub topics                                          |                            |                    |                          |
| Partial safety factor for con-                      |                            |                    |                          |
| Partial safety factors for ste                      |                            |                    |                          |
| Characteristic values of stre                       | ength.                     |                    |                          |

Assignment / Questions: 1.Defend the statement partial safety factor of concrete is more when compared to steel.

Characteristic values of loads.

2. Distinguish between characteristic value of strength and loads?



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                           | : 2021-22                    |                 |                          |  |  |  |
|-----------------------------------------|------------------------------|-----------------|--------------------------|--|--|--|
| Semester                                | : I                          |                 |                          |  |  |  |
| Name of the Program: B.Tecl             | h Civil Engineering          | Year: III       | Section: A               |  |  |  |
| Course/Subject: Design of Co            | oncrete Structures-I         |                 | Course Code: GR18A3003   |  |  |  |
| Name of the Faculty: Dr.T.Sr            | rinivas / Mr.K.VEER <i>A</i> | A BABU          | Dept.: Civil Engineering |  |  |  |
| Designation: Professor / Assi           | stant Professor              |                 |                          |  |  |  |
| Lesson No: 5                            | Dur                          | ation of Lesson | : <u>1hr</u>             |  |  |  |
| Lesson Title: Stress block para         | meters                       |                 |                          |  |  |  |
| INSTRUCTIONAL/LESSON                    | NOBJECTIVES:                 |                 |                          |  |  |  |
| On completion of this lesson            | the student shall be at      | ole to:         |                          |  |  |  |
| 1. Explain the importance of            | Stress block parameters      |                 |                          |  |  |  |
| 2. Discuss about the shape of           | Stress block.                |                 |                          |  |  |  |
| TEACHING AIDS: White be                 | oard, Marker pens and        | l Code book     |                          |  |  |  |
| TEACHING POINTS :                       |                              |                 |                          |  |  |  |
| Sub topics                              |                              |                 |                          |  |  |  |
| Depth of neutral axis.                  |                              |                 |                          |  |  |  |
| Effective depth                         |                              |                 |                          |  |  |  |
| Lever arm.                              | compression                  |                 |                          |  |  |  |
| Force of tension, force of compression. |                              |                 |                          |  |  |  |

Assignment / Questions: 1.Distinguish between depth of neutral axis and effective depth.

2. Distinguish between force of tension and force of compression.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                  | : 2021-22                 |                  |                          |
|--------------------------------|---------------------------|------------------|--------------------------|
| Semester                       | : I                       |                  |                          |
| Name of the Program: B.Tecl    | n Civil Engineering       | Year: III        | Section: A               |
| Course/Subject: Design of Co   | oncrete Structures-I      |                  | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.Sr   | inivas / Mr.K.VEERA       | BABU             | Dept.: Civil Engineering |
| Designation: Professor / Assis | stant Professor           |                  |                          |
| Lesson No: 6                   | Dura                      | ation of Lesson  | : <u>1hr</u>             |
| Lesson Title: IS 456-2000 Use  | s                         |                  |                          |
| INSTRUCTIONAL/LESSON           | NOBJECTIVES:              |                  |                          |
| On completion of this lesson   | the student shall be ab   | le to:           |                          |
| 1. Recognize the importance    | of IS 456-2000.           |                  |                          |
| 2. Recognize the data which is | useful in designing struc | ctural elements. |                          |
| TEACHING AIDS: White be        | oard, Marker pens and     | Code book        |                          |
| TEACHING POINTS :              |                           |                  |                          |

#### LACIII (OT OTIVIS

Sub topics

Various grades of concrete and steel.

Minimum and maximum reinforcement requirements for various structural elements.

Minimum and maximum spacing requirements for steel of various structural elements.

Minimum cover to the reinforcement for various exposure conditions.

Various formulas used for finding area of steel and moment of resistance.

Assignment / Questions: 1. Classify various grades of concrete based on IS456 2000.

2. Indicate the various grades of steel.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                                                 | : 2021-22                           |                  |                          |  |  |  |
|-------------------------------------------------------------------------------|-------------------------------------|------------------|--------------------------|--|--|--|
| Semester                                                                      | : I                                 |                  |                          |  |  |  |
| Name of the Program: B.Te                                                     | ch Civil Engineering                | Year: III        | Section: A               |  |  |  |
| Course/Subject: Design of C                                                   | Concrete Structures-I               |                  | Course Code: GR18A3003   |  |  |  |
| Name of the Faculty: Dr.T.S                                                   | Srinivas / Mr.K.VEER                | A BABU           | Dept.: Civil Engineering |  |  |  |
| Designation: Professor / Ass                                                  | sistant Professor                   |                  |                          |  |  |  |
| Lesson No: 7                                                                  | Dui                                 | ration of Lesson | n: <u>1hr</u>            |  |  |  |
| Lesson Title: Working stress                                                  | method                              |                  |                          |  |  |  |
| INSTRUCTIONAL/LESSO                                                           | ON OBJECTIVES:                      |                  |                          |  |  |  |
| On completion of this lesson                                                  | n the student shall be a            | ble to:          |                          |  |  |  |
| 1. Discuss about the Workin                                                   | g stress method.                    |                  |                          |  |  |  |
| 2. Discuss about the short comings of Working stress method                   |                                     |                  |                          |  |  |  |
| TEACHING AIDS: White board, Marker pens and Code book                         |                                     |                  |                          |  |  |  |
| TEACHING POINTS :                                                             |                                     |                  |                          |  |  |  |
| Sub topics                                                                    |                                     |                  |                          |  |  |  |
| Safety factors in Working stress method.  Principle of working stress method. |                                     |                  |                          |  |  |  |
| Timespie of working stress                                                    | Frinciple of working stress method. |                  |                          |  |  |  |
|                                                                               |                                     |                  |                          |  |  |  |
|                                                                               |                                     |                  |                          |  |  |  |

Assignment / Questions: 1.Indicate the safety factor of concrete in Working stress method.

2. Indicate the assumption made in Working stress method.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

## **LESSON PLAN**

| Academic Year                                                                                                                                                                  | : 2021-22                    |                 |                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------|--------------------------|--|
| Semester                                                                                                                                                                       | : I                          |                 |                          |  |
| Name of the Program: B.Tec                                                                                                                                                     | h Civil Engineering          | Year: III       | Section: A               |  |
| Course/Subject: Design of Co                                                                                                                                                   | oncrete Structures-I         |                 | Course Code: GR18A3003   |  |
| Name of the Faculty: Dr.T.Sr                                                                                                                                                   | rinivas / Mr.K.VEER <i>A</i> | BABU            | Dept.: Civil Engineering |  |
| Designation: Professor / Assi                                                                                                                                                  | stant Professor              |                 |                          |  |
| Lesson No: 8                                                                                                                                                                   |                              | ation of Lesson | : <u>1hr</u>             |  |
| Lesson Title: Comparison of L                                                                                                                                                  | SD with WSM                  |                 |                          |  |
| INSTRUCTIONAL/LESSON                                                                                                                                                           | N OBJECTIVES:                |                 |                          |  |
| On completion of this lesson                                                                                                                                                   | the student shall be ab      | ole to:         |                          |  |
| <ol> <li>Distinguish between LSD and WSM.</li> <li>Discuss about the short comings of Working stress method</li> <li>Discuss about the merits of Limit state method</li> </ol> |                              |                 |                          |  |
| TEACHING AIDS: White board, Marker pens and Code book                                                                                                                          |                              |                 |                          |  |
| TEACHING POINTS :                                                                                                                                                              |                              |                 |                          |  |
| Sub topics Safety factors in Working stress method and Limit state method.                                                                                                     |                              |                 |                          |  |
| Principle of working stress method and limit state method.                                                                                                                     |                              |                 |                          |  |
|                                                                                                                                                                                |                              |                 |                          |  |
|                                                                                                                                                                                |                              |                 |                          |  |

Assignment / Questions: 1.Distinguish between LSD and WSM.



Academic Year

## Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **LESSON PLAN**

: 2021-22

| Semester : I                                                                                                                                                                                                                      |                  |                 |                          |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|--------------------------|--|
| Name of the Program: B.Tech Civil                                                                                                                                                                                                 | Engineering      | Year: III       | Section: A               |  |
| Course/Subject: Design of Concrete                                                                                                                                                                                                | Structures-I     |                 | Course Code: GR18A3003   |  |
| Name of the Faculty: Dr.T.Srinivas /                                                                                                                                                                                              | Mr.K.VEERA       | BABU            | Dept.: Civil Engineering |  |
| Designation: Professor / Assistant Pr                                                                                                                                                                                             | rofessor         |                 |                          |  |
| Lesson No: 9                                                                                                                                                                                                                      | Dura             | tion of Lesson: | : <u>1hr</u>             |  |
| Lesson Title: Analysis and design of si                                                                                                                                                                                           | ingly reinforced | beams           |                          |  |
| INSTRUCTIONAL/LESSON OBJECTIVES:                                                                                                                                                                                                  |                  |                 |                          |  |
| On completion of this lesson the student shall be able to:                                                                                                                                                                        |                  |                 |                          |  |
| <ol> <li>Distinguish between the balanced and un balanced sections.</li> <li>Explain about the force of compression and tension.</li> <li>Discuss about the lever arm</li> <li>Discuss about the moment of resistance.</li> </ol> |                  |                 |                          |  |
| TEACHING AIDS: White board, Marker pens and Code book                                                                                                                                                                             |                  |                 |                          |  |
| TEACHING POINTS : Sub topics                                                                                                                                                                                                      |                  |                 |                          |  |

Assignment / Questions: 1.Distinguish between balanced section and unbalanced section.

Balance section, under reinforced section and over reinforced section.

Force of tension and compression. Lever arm and Moment of resistance.

2. Estimate the moment of resistance for under reinforced section.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **LESSON PLAN**

| Academic Year                  | : 2021-22           |                |                          |
|--------------------------------|---------------------|----------------|--------------------------|
| Semester                       | : I                 |                |                          |
| Name of the Program: B.Tech    | Civil Engineering   | Year: III      | Section: A               |
| Course/Subject: Design of Co   | ncrete Structures-I |                | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.Sr   | inivas / Mr.K.VEERA | BABU           | Dept.: Civil Engineering |
| Designation: Professor / Assis | stant Professor     |                |                          |
| Lesson No: 10                  | Durat               | ion of Lesson: | <u>1hr</u>               |
| Lesson Title: Problems solving |                     |                |                          |
| INCEDITORIAL /LECCON           | ODIECTIVEC.         |                |                          |

#### INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Calculate the depth of neutral axis.
- 2. Calculate the force of compression and tension.
- 3. Calculate the maximum depth of neutral axis.
- 4. Categorize the section whether it is balanced section or unbalanced section.
- 5. Calculate the moment of resistance based on class of section for given steel.
- 6. Calculate area of steel for the given moment.

TEACHING AIDS: White board, Marker pens and Code book

#### TEACHING POINTS

Sub topics

Force of compression, force of tension, depth of neutral axis, maximum depth of neutral axis, class of section, moment of resistance offered by the section and steel required to resist the given moment.

Assignment / Questions: 1.Distinguish between depth of neutral axis and maximum depth of neutral axis.

2. Calculate area of tension steel for the given moment?



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **LESSON PLAN**

#### **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

- 1. Classify the type of beam.
- 2. Identify the importance of Doubly Reinforced Beam.
- 3. Analyze the Additional moment carried by the additional tensile steel and compression steel.
- 4. Analyze the ultimate moment or moment of resistance offered by the A<sub>stl.</sub>

TEACHING AIDS: White board, Marker pens and Code book

#### TEACHING POINTS :

Sub topics

Force of compression, force of tension, depth of neutral axis, maximum depth of neutral axis, class of section, additional moment of resistance offered by the section and steel required to resist the additional moment, moment of resistance offered by the compression steel.

Assignment / Questions: 1.Distinguish between singly reinforced beam and doubly reinforced beam.

2. Analyze the doubly reinforced beam.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **LESSON PLAN**

| Academic Year                  | : 2021-22            |                |                          |
|--------------------------------|----------------------|----------------|--------------------------|
| Semester                       | : I                  |                |                          |
| Name of the Program: B.Tech    | Civil Engineering    | Year: III      | Section: A               |
| Course/Subject: Design of Co   | oncrete Structures-I |                | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.Sri  | inivas / Mr.K.VEERA  | BABU           | Dept.: Civil Engineering |
| Designation: Professor / Assis | stant Professor      |                |                          |
| Lesson No: 12                  | Durat                | ion of Lesson: | <u>1hr</u>               |
| Lesson Title: Problems solving |                      |                |                          |
|                                |                      |                |                          |

#### **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

- 1. Calculate the depth of neutral axis.
- 2. Calculate the force of compression and tension.
- 3. Calculate the maximum depth of neutral axis.
- 4. Calculate additional moment of resistance based on additional tensile steel or compression steel.
- 5. Calculate area of steel for the given moment.

TEACHING AIDS: White board, Marker pens and Code book

#### TEACHING POINTS

Sub topics

Force of compression, force of tension, depth of neutral axis, maximum depth of neutral axis, class of section, additional moment of resistance offered by the section and steel required to resist the additional moment, moment of resistance offered by the compression steel.

Assignment / Questions: 1.Calculate the design stress in compression reinforcement for the given data.

2. Calculate the additional moment for the given data.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **LESSON PLAN**

| Academic Year                  | : 2021-22            |                |                          |
|--------------------------------|----------------------|----------------|--------------------------|
| Semester                       | : I                  |                |                          |
| Name of the Program: B.Tech    | Civil Engineering    | Year: III      | Section: A               |
| Course/Subject: Design of Co   | oncrete Structures-I |                | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.Sr   | inivas / Mr.K.VEERA  | BABU           | Dept.: Civil Engineering |
| Designation: Professor / Assis | stant Professor      |                |                          |
| Lesson No: 13                  | Durat                | ion of Lesson: | <u>1hr</u>               |
| Lesson Title: Analysis and De  | esign of T- Beams.   |                |                          |

#### **INSTRUCTIONAL/LESSON OBJECTIVES:**

On completion of this lesson the student shall be able to:

- 1. Classify the type of beam.
- 2. Identify the importance of T-Beam.
- 3. Determine the position of neutral axis in the T-Beam.
- 4. Determine the ultimate moment or moment of resistance offered by the T-Beam.
- 5. Determine the amount of steel required for the given moment.

TEACHING AIDS: White board, Marker pens and Code book

#### TEACHING POINTS

#### Sub topics

Force of compression, force of tension, maximum depth of neutral axis, class of section, position of neutral axis, Flange width, moment of resistance and Area of steel.

Assignment / Questions: 1. Calculate effective flange width of T-Beam for the given data

2. Calculate the position of neutral axis for the given data.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **LESSON PLAN**

| Academic Tear                  | : 2021-22          |                     |                          |
|--------------------------------|--------------------|---------------------|--------------------------|
| Semester                       | : I                |                     |                          |
| Name of the Program: B.Tech    | n Civil Engineerin | g Year: III         | Section: A               |
| Course/Subject: Design of Co   | ncrete Structures- | I                   | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.Sr   | inivas / Mr.K.VEI  | ERA BABU            | Dept.: Civil Engineering |
| Designation: Professor / Assis | stant Professor    |                     |                          |
| Lesson No: 14                  | D                  | ouration of Lesson: | <u>1hr</u>               |
| Lesson Title: Problems solving |                    |                     |                          |

#### INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. Calculate the depth of neutral axis.
- 2. Calculate the force of compression and tension.
- 3. Calculate the maximum depth of neutral axis.
- 4. Calculate the position of neutral axis.
- 5. Calculate the effective flange width of T-Beam.
- 6. Calculate the moment of resistance based on tensile steel..
- 7. Calculate the area of steel for the given moment.

TEACHING AIDS: White board, Marker pens and Code book

#### TEACHING POINTS

Sub topics

Force of compression, force of tension, depth of neutral axis, maximum depth of neutral axis, position of neutral axis, effective flange width of T-Beam, moment of resistance offered by the section and steel required to resist the moment.

Assignment / Questions: 1.Design the T-beam for the given data.

2. Calculate moment of resistance when neutral axis lies in web for the

given data.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **LESSON PLAN**

| Academic Year                  | : 2021-22            |                 |                          |
|--------------------------------|----------------------|-----------------|--------------------------|
| Semester                       | : I                  |                 |                          |
| Name of the Program: B.Tech    | Civil Engineering    | Year: III       | Section: A               |
| Course/Subject: Design of Co   | oncrete Structures-I |                 | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.Sri  | inivas / Mr.K.VEERA  | BABU            | Dept.: Civil Engineering |
| Designation: Professor / Assis | stant Professor      |                 |                          |
| Lesson No: 15                  | Durat                | tion of Lesson: | <u>1hr</u>               |
| Lesson Title: Analysis and De  | esign of L- Beams.   |                 |                          |
| INCTRICTIONAL /LECCON          | ODIECTIVES           |                 |                          |

#### <u>INSTRUCTIONAL/LESSON OBJECTIVES:</u>

On completion of this lesson the student shall be able to:

- 1. Classify the type of beam.
- 2. Identify the importance of L-Beam.
- 3. Determine the position of neutral axis in the L-Beam.
- 4. Determine the ultimate moment or moment of resistance offered by the L-Beam.
- 5. Determine the amount of steel required for the given moment.

TEACHING AIDS: White board, Marker pens and Code book

#### TEACHING POINTS

Sub topics

Force of compression, force of tension, maximum depth of neutral axis, class of section, position of neutral axis, Flange width, moment of resistance and Area of steel.

Assignment / Questions: 1. Design the L-Beam for the given data

2. Calculate the position of neutral axis for the given data.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **LESSON PLAN**

| Academic Year                                                                                                                                                                                                                                                                | : 2021-22           |                |                          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|--------------------------|--|
| Semester                                                                                                                                                                                                                                                                     | : I                 |                |                          |  |
| Name of the Program: B.Tech                                                                                                                                                                                                                                                  | Civil Engineering   | Year: III      | Section: A               |  |
| Course/Subject: Design of Co                                                                                                                                                                                                                                                 | ncrete Structures-I |                | Course Code: GR18A3003   |  |
| Name of the Faculty: Dr.T.Sr                                                                                                                                                                                                                                                 | inivas / Mr.K.VEERA | BABU           | Dept.: Civil Engineering |  |
| Designation: Professor / Assis                                                                                                                                                                                                                                               | stant Professor     |                |                          |  |
| Lesson No: 16                                                                                                                                                                                                                                                                | Durat               | ion of Lesson: | <u>1hr</u>               |  |
| Lesson Title: <u>Design of Beams for shear.</u>                                                                                                                                                                                                                              |                     |                |                          |  |
| INSTRUCTIONAL/LESSON OBJECTIVES:                                                                                                                                                                                                                                             |                     |                |                          |  |
| On completion of this lesson the student shall be able to:                                                                                                                                                                                                                   |                     |                |                          |  |
| <ol> <li>Calculate the nominal shear strength of beam.</li> <li>Calculate the design shear strength of beam.</li> <li>Calculate the maximum shear stress of beam.</li> <li>Calculate the area of shear reinforcement and spacing of stirrups for resisting shear.</li> </ol> |                     |                |                          |  |

## TEACHING POINTS :

TEACHING AIDS: White board, Marker pens and Code book

Sub topics

Nominal shear strength, design shear strength, maximum shear stress and shear reinforcement. Spacing of stirrups.

Assignment / Questions: 1. Calculate the area of shear reinforcement for the given data

2. Calculate the spacing of stirrups.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **LESSON PLAN**

| Academic Year               | : 2021-22             |                |                          |
|-----------------------------|-----------------------|----------------|--------------------------|
| Semester                    | : I                   |                |                          |
| Name of the Program: B.Te   | ech Civil Engineering | Year: III      | Section: A               |
| Course/Subject: Design of   | Concrete Structures-I |                | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.  | Srinivas / Mr.K.VEER  | A BABU         | Dept.: Civil Engineering |
| Designation: Professor / As | ssistant Professor    |                |                          |
| Lesson No: 17               | Dura                  | tion of Lesson | : <u>1hr</u>             |
| Lesson Title: Problem solv  | <u>ving.</u>          |                |                          |
| INSTRUCTIONAL/LESSO         | ON OBJECTIVES:        |                |                          |
|                             |                       |                |                          |

On completion of this lesson the student shall be able to:

- 1. Calculate the nominal shear strength of beam.
- 2. Calculate the design shear strength of beam.
- 3. Calculate the maximum shear stress of beam.
- 4. Calculate the area of shear reinforcement and spacing of stirrups for resisting shear.

TEACHING AIDS: White board, Marker pens and Code book

#### TEACHING POINTS

Sub topics

Nominal shear strength, design shear strength, maximum shear stress and shear reinforcement. Spacing of stirrups.

Assignment / Questions: 1. Calculate the area of shear reinforcement for the given data

2. Calculate the spacing of stirrups.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **LESSON PLAN**

| Academic Year                                                                                                                    | : 2021-22                    |                          |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|--|--|
| Semester                                                                                                                         | : I                          |                          |  |  |
| Name of the Program: B.Tech                                                                                                      | Civil Engineering Year: III  | Section: A               |  |  |
| Course/Subject: Design of Co                                                                                                     | ncrete Structures-I          | Course Code: GR18A3003   |  |  |
| Name of the Faculty: Dr.T.Sri                                                                                                    | nivas / Mr.K.VEERA BABU      | Dept.: Civil Engineering |  |  |
| Designation: Professor / Assis                                                                                                   | tant Professor               |                          |  |  |
| Lesson No: 18                                                                                                                    | Duration of Lesson:          | <u>1hr</u>               |  |  |
| Lesson Title: <u>Design of Beam</u>                                                                                              | as for Torsion.              |                          |  |  |
| INSTRUCTIONAL/LESSON                                                                                                             | OBJECTIVES:                  |                          |  |  |
| On completion of this lesson t                                                                                                   | he student shall be able to: |                          |  |  |
| <ol> <li>Analyze the beam for Torsion</li> <li>Identify the equivalent shear</li> <li>Identify the equivalent moment.</li> </ol> |                              |                          |  |  |
| TEACHING AIDS: White board, Marker pens and Code book                                                                            |                              |                          |  |  |
| TEACHING POINTS :  Sub topics Equivalent shear, equivalent moment, Longitudinal reinforcement and Transverse reinforcement.      |                              |                          |  |  |

Assignment / Questions: 1. Design the beam for Torsion.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

## **LESSON PLAN**

| Academic Year                                                                                       | : 2021-22               |                 |                          |  |
|-----------------------------------------------------------------------------------------------------|-------------------------|-----------------|--------------------------|--|
| Semester                                                                                            | : I                     |                 |                          |  |
| Name of the Program: B.Tec                                                                          | h Civil Engineering     | Year: III       | Section: A               |  |
| Course/Subject: Design of Course/Subject: Design of Course                                          | oncrete Structures-I    |                 | Course Code: GR18A3003   |  |
| Name of the Faculty: Dr.T.S                                                                         | rinivas / Mr.K.VEER     | A BABU          | Dept.: Civil Engineering |  |
| Designation: Professor / Assi                                                                       | istant Professor        |                 |                          |  |
| Lesson No: 19                                                                                       | Dura                    | tion of Lesson: | <u>1hr</u>               |  |
| Lesson Title: Concept of Bo                                                                         | nd and Anchorage.       |                 |                          |  |
| INSTRUCTIONAL/LESSO                                                                                 | N OBJECTIVES:           |                 |                          |  |
| On completion of this lesson                                                                        | the student shall be al | ole to:         |                          |  |
| <ol> <li>Identify the importance of Bond.</li> <li>Identify the importance of Anchorage.</li> </ol> |                         |                 |                          |  |
| TEACHING AIDS: White b                                                                              | ooard, Marker pens and  | d Code book     |                          |  |
| TEACHING POINTS :                                                                                   |                         |                 |                          |  |
| Sub topics                                                                                          |                         |                 |                          |  |
| Bond                                                                                                |                         |                 |                          |  |
| Anchorage                                                                                           |                         |                 |                          |  |
|                                                                                                     |                         |                 |                          |  |
|                                                                                                     |                         |                 |                          |  |
|                                                                                                     |                         |                 |                          |  |

Assignment / Questions: 1. Classify the various bonds.

2. Classify the Anchorage.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

## **LESSON PLAN**

| Academic Year                                                                                        | : 2021-22              |                 |                          |  |
|------------------------------------------------------------------------------------------------------|------------------------|-----------------|--------------------------|--|
| Semester                                                                                             | : I                    |                 |                          |  |
| Name of the Program: B.Tec                                                                           | ch Civil Engineering   | Year: III       | Section: A               |  |
| Course/Subject: Design of C                                                                          | oncrete Structures-I   |                 | Course Code: GR18A3003   |  |
| Name of the Faculty: Dr.T.S                                                                          | rinivas / Mr.K.VEER    | A BABU          | Dept.: Civil Engineering |  |
| Designation: Professor / Ass                                                                         | istant Professor       |                 |                          |  |
| Lesson No: 20                                                                                        | Dura                   | tion of Lesson: | <u>1hr</u>               |  |
| Lesson Titl: <u>Development le</u>                                                                   | ngth and Detailing.    |                 |                          |  |
| INSTRUCTIONAL/LESSO                                                                                  | N OBJECTIVES:          |                 |                          |  |
| On completion of this lesson the student shall be able to:                                           |                        |                 |                          |  |
| <ol> <li>Importance of development length.</li> <li>Identify the importance of detailing.</li> </ol> |                        |                 |                          |  |
| TEACHING AIDS: White board, Marker pens and Code book                                                |                        |                 |                          |  |
| TEACHING POINTS :                                                                                    |                        |                 |                          |  |
| Sub topics                                                                                           |                        |                 |                          |  |
| Development length, Bond                                                                             | d stress and Detailing |                 |                          |  |
|                                                                                                      |                        |                 |                          |  |
|                                                                                                      |                        |                 |                          |  |
|                                                                                                      |                        |                 |                          |  |

Assignment / Questions: 1.Illustrate about detailing.



safe or not in bond.

# Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                                                                   | : 2021-22                    |                  |                                |
|-------------------------------------------------------------------------------------------------|------------------------------|------------------|--------------------------------|
| Semester                                                                                        | : I                          |                  |                                |
| Name of the Program: B.Tecl                                                                     | n Civil Engineering          | Year: III        | Section: A                     |
| Course/Subject: Design of Co                                                                    | oncrete Structures-I         |                  | Course Code: GR18A3003         |
| Name of the Faculty: Dr.T.Sr                                                                    | rinivas / Mr.K.VEER <i>A</i> | A BABU           | Dept.: Civil Engineering       |
| Designation: Professor / Assi                                                                   | stant Professor              |                  |                                |
| Lesson No: 21                                                                                   | Dura                         | tion of Lesson:  | <u>1hr</u>                     |
| Lesson Title: Problem Solvin                                                                    | ng.                          |                  |                                |
| INSTRUCTIONAL/LESSON                                                                            | NOBJECTIVES:                 |                  |                                |
| On completion of this lesson the student shall be able to:                                      |                              |                  |                                |
| <ol> <li>Appraise whether the beams is safe in bond or not</li> <li>Infer detailing.</li> </ol> |                              |                  |                                |
| TEACHING AIDS: White board, Marker pens and Code book                                           |                              |                  |                                |
| TEACHING POINTS :  Sub topics Development length, anchorage and detailing.                      |                              |                  |                                |
| Assignment / Questions: 1. D                                                                    | etermine the bond len        | gth for the give | n data and check whether it is |



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                                          | : 2021-22               |                 |                              |  |
|------------------------------------------------------------------------|-------------------------|-----------------|------------------------------|--|
| Semester                                                               | : I                     |                 |                              |  |
| Name of the Program: B.Tecl                                            | n Civil Engineering     | Year: III       | Section: A                   |  |
| Course/Subject: Design of Co                                           | oncrete Structures-I    |                 | Course Code: GR18A3003       |  |
| Name of the Faculty: Dr.T.Sr                                           | rinivas / Mr.K.VEERA    | BABU            | Dept.: Civil Engineering     |  |
| Designation: Professor / Assi                                          | stant Professor         |                 |                              |  |
| Lesson No: 22                                                          | Durat                   | tion of Lesson: | <u>1hr</u>                   |  |
| Lesson Title: <u>Introduction of</u>                                   | slabs.                  |                 |                              |  |
| INSTRUCTIONAL/LESSON                                                   | NOBJECTIVES:            |                 |                              |  |
| On completion of this lesson the student shall be able to:             |                         |                 |                              |  |
| 1. Categorize the slabs.                                               |                         |                 |                              |  |
| TEACHING AIDS: White board, Marker pens and Code book TEACHING POINTS: |                         |                 |                              |  |
| Sub topics Types of slabs, difference between slab and beam.           |                         |                 |                              |  |
| Assignment / Questions: 1.Ca                                           | ategorize the slabs bas | ed on shape, sp | an ratio and end conditions. |  |



**TEACHING POINTS** 

for development length and check for deflection.

Sub topics

## Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **LESSON PLAN**

| Academic Year                                              | : 2021-22                   |                          |  |
|------------------------------------------------------------|-----------------------------|--------------------------|--|
| Semester                                                   | : I                         |                          |  |
| Name of the Program: B.Tech                                | Civil Engineering Year: III | Section: A               |  |
| Course/Subject: Design of Co                               | ncrete Structures-I         | Course Code: GR18A3003   |  |
| Name of the Faculty: Dr.T.Sri                              | inivas / Mr.K.VEERA BABU    | Dept.: Civil Engineering |  |
| Designation: Professor / Assis                             | stant Professor             |                          |  |
| Lesson No: 23                                              | Duration of Lesson:         | <u>1hr</u>               |  |
| Lesson Title: <u>Design of one way slab.</u>               |                             |                          |  |
| INSTRUCTIONAL/LESSON OBJECTIVES:                           |                             |                          |  |
| On completion of this lesson the student shall be able to: |                             |                          |  |
| 1. Design one way slab                                     |                             |                          |  |
| TEACHING AIDS: White board, Marker pens and Code book      |                             |                          |  |

Assignment / Questions: 1. Compile the steps involved in the design of one way slab.

Signature of faculty

Span ratio, thickness of slab, Area of steel along short span, distribution steel, check for shear, check



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

## **LESSON PLAN**

| Academic Year                                                                                                        | : 2021-22              |                 |                          |  |
|----------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|--------------------------|--|
| Semester                                                                                                             | : I                    |                 |                          |  |
| Name of the Program: B.Tecl                                                                                          | n Civil Engineering    | Year: III       | Section: A               |  |
| Course/Subject: Design of Co                                                                                         | oncrete Structures-I   |                 | Course Code: GR18A3003   |  |
| Name of the Faculty: Dr.T.Sr                                                                                         | inivas / Mr.K.VEERA    | BABU            | Dept.: Civil Engineering |  |
| Designation: Professor / Assis                                                                                       | stant Professor        |                 |                          |  |
| Lesson No: 24                                                                                                        | Durat                  | tion of Lesson: | <u>1hr</u>               |  |
| Lesson Title: One way slab p                                                                                         | oroblem.               |                 |                          |  |
| INSTRUCTIONAL/LESSON                                                                                                 | OBJECTIVES:            |                 |                          |  |
| On completion of this lesson the student shall be able to:                                                           |                        |                 |                          |  |
| 1. Design the one way slab such as finding thickness of slab, Area of steel along short span and distribution steel. |                        |                 |                          |  |
| TEACHING AIDS: White board, Marker pens and Code book                                                                |                        |                 |                          |  |
| TEACHING POINTS :                                                                                                    |                        |                 |                          |  |
| Sub topics Span ratio, thickness of slab, Area of steel along short span and distribution steel.                     |                        |                 |                          |  |
| Assignment / Questions: 1.De                                                                                         | esign one way slab for | the given data. |                          |  |



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                                                            | : 2021-22            |                 |                          |  |
|------------------------------------------------------------------------------------------|----------------------|-----------------|--------------------------|--|
| Semester                                                                                 | : I                  |                 |                          |  |
| Name of the Program: B.Teo                                                               | ch Civil Engineering | Year: III       | Section: A               |  |
| Course/Subject: Design of C                                                              | oncrete Structures-I |                 | Course Code: GR18A3003   |  |
| Name of the Faculty: Dr.T.S                                                              | rinivas / Mr.K.VEER  | A BABU          | Dept.: Civil Engineering |  |
| Designation: Professor / Ass                                                             | istant Professor     |                 |                          |  |
| Lesson No: 25                                                                            | Dura                 | tion of Lesson: | <u>1hr</u>               |  |
| Lesson Title: One way slab                                                               | problem.             |                 |                          |  |
| INSTRUCTIONAL/LESSO                                                                      | N OBJECTIVES:        |                 |                          |  |
| On completion of this lesson the student shall be able to:                               |                      |                 |                          |  |
| 1. Establish the Check for shear, check for development length and check for deflection. |                      |                 |                          |  |
| TEACHING AIDS: White board, Marker pens and Code book  TEACHING POINTS:                  |                      |                 |                          |  |
| Sub topics Check for shear, check for development length and check for deflection        |                      |                 |                          |  |
|                                                                                          |                      |                 |                          |  |

Assignment / Questions: 1. Establish the checks for shear, development length and deflection.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **LESSON PLAN**

| Semester : I  Name of the Program: B.Tech Civil Engineering Year: III Section: A  Course/Subject: Design of Concrete Structures-I Course Code: GR18A300  Name of the Faculty: Dr.T.Srinivas / Mr.K.VEERA BABU Dept.: Civil Engineering  Designation: Professor / Assistant Professor  Lesson No: 26 | Academic Year                  | : 2021-22               |                |                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|----------------|--------------------------|
| Course/Subject: Design of Concrete Structures-I  Name of the Faculty: Dr.T.Srinivas / Mr.K.VEERA BABU  Dept.: Civil Engineering  Designation: Professor / Assistant Professor  Lesson No: 26                                                                                                        | Semester                       | : I                     |                |                          |
| Name of the Faculty: Dr.T.Srinivas / Mr.K.VEERA BABU  Dept.: Civil Engineering  Designation: Professor / Assistant Professor  Lesson No: 26                                                                                                                                                         | Name of the Program: B.Tech    | Civil Engineering       | Year: III      | Section: A               |
| Designation: Professor / Assistant Professor  Lesson No: 26                                                                                                                                                                                                                                         | Course/Subject: Design of Co   | ncrete Structures-I     |                | Course Code: GR18A3003   |
| Lesson No: 26                                                                                                                                                                                                                                                                                       | Name of the Faculty: Dr.T.Sri  | inivas / Mr.K.VEERA     | BABU           | Dept.: Civil Engineering |
| Lesson Title: Design of Two way slab.  INSTRUCTIONAL/LESSON OBJECTIVES:                                                                                                                                                                                                                             | Designation: Professor / Assis | stant Professor         |                |                          |
| INSTRUCTIONAL/LESSON OBJECTIVES:                                                                                                                                                                                                                                                                    | Lesson No: 26                  | Durat                   | ion of Lesson: | <u>1hr</u>               |
|                                                                                                                                                                                                                                                                                                     | Lesson Title: Design of Two    | way slab.               |                |                          |
| On completion of this lesson the student shall be able to:                                                                                                                                                                                                                                          | INSTRUCTIONAL/LESSON           | OBJECTIVES:             |                |                          |
|                                                                                                                                                                                                                                                                                                     | On completion of this lesson t | the student shall be ab | le to:         |                          |

1. Design two way slab.

TEACHING AIDS: White board, Marker pens and Code book

#### TEACHING POINTS

Sub topics

Span ratio, thickness of slab, Area of steel along short span, long span, check for shear, check for development length and check for deflection.

Assignment / Questions: 1. Compile the steps involved in the design of two way slab.



Sub topics

# Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **LESSON PLAN**

| Academic Year                                              | : 2021-22            |                |                          |  |
|------------------------------------------------------------|----------------------|----------------|--------------------------|--|
| Semester                                                   | : I                  |                |                          |  |
| Name of the Program: B.Tech                                | n Civil Engineering  | Year: III      | Section: A               |  |
| Course/Subject: Design of Co                               | oncrete Structures-I |                | Course Code: GR18A3003   |  |
| Name of the Faculty: Dr.T.Sr                               | inivas / Mr.K.VEERA  | BABU           | Dept.: Civil Engineering |  |
| Designation: Professor / Assis                             | stant Professor      |                |                          |  |
| Lesson No: 27                                              | Durat                | ion of Lesson: | <u>1hr</u>               |  |
| Lesson Title: Two way slab problem.                        |                      |                |                          |  |
| INSTRUCTIONAL/LESSON OBJECTIVES:                           |                      |                |                          |  |
| On completion of this lesson the student shall be able to: |                      |                |                          |  |
| 1. Design two way slab.                                    |                      |                |                          |  |
| TEACHING AIDS: White board, Marker pens and Code book      |                      |                |                          |  |
| TEACHING POINTS :                                          |                      |                |                          |  |

Span ratio, thickness of slab, Area of steel along short span, long span, check for shear, check for

Assignment / Questions: 1. Design two way slab for the given data.

development length and check for deflection.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **LESSON PLAN**

| Academic Year                  | : 2021-22                   |                          |
|--------------------------------|-----------------------------|--------------------------|
| Semester                       | : I                         |                          |
| Name of the Program: B.Tech    | Civil Engineering Year: III | Section: A               |
| Course/Subject: Design of Co   | ncrete Structures-I         | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.Sr   | inivas / Mr.K.VEERA BABU    | Dept.: Civil Engineering |
| Designation: Professor / Assis | stant Professor             |                          |
| Lesson No: 28                  | Duration of Less            | on: <u>1hr</u>           |
| Lesson Title: Design of conti  | nuous slab.                 |                          |
| INSTRUCTIONAL/LESSON           | OBJECTIVES:                 |                          |
|                                | 1 . 1 . 1 111 11 .          |                          |

On completion of this lesson the student shall be able to:

1. Design continuous slab

TEACHING AIDS: White board, Marker pens and Code book

#### TEACHING POINTS

Sub topics

Thickness of slab, BM and SF coefficients, Area of steel along short span, long span, check for shear, check for development length and check for deflection.

Assignment / Questions: 1. Compile the steps involved in the design of continuous slab.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **LESSON PLAN**

| Academic Year                           | : 2021-22               |                |                          |
|-----------------------------------------|-------------------------|----------------|--------------------------|
| Semester                                | : I                     |                |                          |
| Name of the Program: B.Tech             | Civil Engineering       | Year: III      | Section: A               |
| Course/Subject: Design of Co            | oncrete Structures-I    |                | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.Sr            | inivas / Mr.K.VEERA     | BABU           | Dept.: Civil Engineering |
| Designation: Professor / Assis          | stant Professor         |                |                          |
| Lesson No: 29                           | Durat                   | ion of Lesson: | <u>1hr</u>               |
| Lesson Title: Continuous sla            | b problem solving       |                |                          |
| <u>:</u><br><u>INSTRUCTIONAL/LESSON</u> | OBJECTIVES:             |                |                          |
| On completion of this lesson            | the student shall be ab | le to:         |                          |
|                                         |                         |                |                          |

1. Design continuous slab.

TEACHING AIDS: White board, Marker pens and Code book

#### TEACHING POINTS

Sub topics

Thickness of slab, BM and SF coefficients, Area of steel along short span, long span, check for shear, check for development length and check for deflection.

Assignment / Questions: 1.Design continuous slab for the given data.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                                                          | : 2021-22             |                |                          |  |
|----------------------------------------------------------------------------------------|-----------------------|----------------|--------------------------|--|
| Semester                                                                               | : I                   |                |                          |  |
| Name of the Program: B.Tech                                                            | Civil Engineering     | Year: III      | Section: A               |  |
| Course/Subject: Design of Co                                                           | ncrete Structures-I   |                | Course Code: GR18A3003   |  |
| Name of the Faculty: Dr.T.Sr                                                           | inivas / Mr.K.VEERA   | BABU           | Dept.: Civil Engineering |  |
| Designation: Professor / Assis                                                         | stant Professor       |                |                          |  |
| Lesson No: 30                                                                          | Durat                 | ion of Lesson: | <u>1hr</u>               |  |
| Lesson Title: Design of Long                                                           | titudinal stair case. |                |                          |  |
| INSTRUCTIONAL/LESSON OBJECTIVES:                                                       |                       |                |                          |  |
| On completion of this lesson the student shall be able to:                             |                       |                |                          |  |
| 1. Design the longitudinal stair case.                                                 |                       |                |                          |  |
| TEACHING AIDS: White board, Marker pens and Code book                                  |                       |                |                          |  |
| TEACHING POINTS :                                                                      |                       |                |                          |  |
| Sub topics Step width, rise, tread, main reinforcement and distribution reinforcement. |                       |                |                          |  |
|                                                                                        |                       |                |                          |  |
|                                                                                        |                       |                |                          |  |

Assignment / Questions: 1. Compile the steps involved in the design of longitudinal stair case.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| : 2021-22                                                                              |                                                                                          |                                                                                                         |  |  |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| : I                                                                                    |                                                                                          |                                                                                                         |  |  |
| ch Civil Engineering                                                                   | Year: III                                                                                | Section: A                                                                                              |  |  |
| oncrete Structures-I                                                                   |                                                                                          | Course Code: GR18A3003                                                                                  |  |  |
| rinivas / Mr.K.VEER                                                                    | A BABU                                                                                   | Dept.: Civil Engineering                                                                                |  |  |
| istant Professor                                                                       |                                                                                          |                                                                                                         |  |  |
| Dura                                                                                   | tion of Lesson:                                                                          | <u>1hr</u>                                                                                              |  |  |
| stair case problem.                                                                    |                                                                                          |                                                                                                         |  |  |
| INSTRUCTIONAL/LESSON OBJECTIVES:                                                       |                                                                                          |                                                                                                         |  |  |
| On completion of this lesson the student shall be able to:                             |                                                                                          |                                                                                                         |  |  |
| 1. Design longitudinal stair case.                                                     |                                                                                          |                                                                                                         |  |  |
| ooard, Marker pens and                                                                 | d Code book                                                                              |                                                                                                         |  |  |
|                                                                                        |                                                                                          |                                                                                                         |  |  |
| Sub topics Step width, rise, tread, main reinforcement and distribution reinforcement. |                                                                                          |                                                                                                         |  |  |
| in remotection and c                                                                   | iistiiottion tenn                                                                        | iorecinent.                                                                                             |  |  |
|                                                                                        |                                                                                          |                                                                                                         |  |  |
|                                                                                        |                                                                                          |                                                                                                         |  |  |
|                                                                                        | : I  ch Civil Engineering  concrete Structures-I  rinivas / Mr.K.VEERA  istant Professor | : I  ch Civil Engineering Year: III  concrete Structures-I  rinivas / Mr.K.VEERA BABU  istant Professor |  |  |

Assignment / Questions: 1. Design longitudinal stair case for the given data.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                                                                                                                                                                               | : 2021-22                                                                                    |                        |                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------|--------------------------|
| Semester                                                                                                                                                                                                    | : I                                                                                          |                        |                          |
| Name of the Program: B.Tec                                                                                                                                                                                  | h Civil Engineering                                                                          | Year: III              | Section: A               |
| Course/Subject: Design of Co                                                                                                                                                                                | oncrete Structures-I                                                                         |                        | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.Sı                                                                                                                                                                                | rinivas / Mr.K.VEERA                                                                         | BABU                   | Dept.: Civil Engineering |
| Designation: Professor / Assi                                                                                                                                                                               | stant Professor                                                                              |                        |                          |
| Lesson No: 32  Lesson Title: Design of Dog  INSTRUCTIONAL/LESSON  On completion of this lesson  1. Design of dog legged  TEACHING AIDS: White b  TEACHING POINTS:  Sub topics  Step width, rise, tread, mai | legged stair case.  N OBJECTIVES:  the student shall be abstair case.  oard, Marker pens and | ole to:<br>I Code book |                          |
|                                                                                                                                                                                                             |                                                                                              |                        |                          |
|                                                                                                                                                                                                             |                                                                                              |                        |                          |

Assignment / Questions: 1. Design dog legged stair case for the given data.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                              | : 2021-22                    |                    |                          |
|------------------------------------------------------------|------------------------------|--------------------|--------------------------|
| Semester                                                   | : I                          |                    |                          |
| Name of the Program: B.Tec                                 | h Civil Engineering          | Year: III          | Section: A               |
| Course/Subject: Design of Co                               | oncrete Structures-I         |                    | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.Si                               | rinivas / Mr.K.VEER <i>A</i> | A BABU             | Dept.: Civil Engineering |
| Designation: Professor / Assi                              | stant Professor              |                    |                          |
| Lesson No: 33                                              | Dura                         | tion of Lesson:    | <u>1hr</u>               |
| Lesson Title: Design of oper                               | n well stair case.           |                    |                          |
| INSTRUCTIONAL/LESSON                                       | N OBJECTIVES:                |                    |                          |
| On completion of this lesson the student shall be able to: |                              |                    |                          |
| 1. Design open well stair case                             | <del>2</del> .               |                    |                          |
| TEACHING AIDS: White b                                     | oard, Marker pens and        | d Code book        |                          |
| TEACHING POINTS :                                          |                              |                    |                          |
| Sub topics Step width, rise, tread, mai                    | n reinforcement and d        | listribution reint | forcement.               |
|                                                            |                              |                    |                          |
|                                                            |                              |                    |                          |
|                                                            |                              |                    |                          |

Assignment / Questions: 1. Design open well stair case for the given data.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

## **LESSON PLAN**

| Academic Year                                                                                     | : 2021-22            |                |                          |
|---------------------------------------------------------------------------------------------------|----------------------|----------------|--------------------------|
| Semester                                                                                          | : I                  |                |                          |
| Name of the Program: B.Tecl                                                                       | n Civil Engineering  | Year: III      | Section: A               |
| Course/Subject: Design of Co                                                                      | oncrete Structures-I |                | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.Sr                                                                      | inivas / Mr.K.VEERA  | BABU           | Dept.: Civil Engineering |
| Designation: Professor / Assi                                                                     | stant Professor      |                |                          |
| Lesson No: 34                                                                                     | Durat                | ion of Lesson: | <u>1hr</u>               |
| Lesson Title: <u>Design of cano</u>                                                               | <u>py.</u>           |                |                          |
| INSTRUCTIONAL/LESSON                                                                              | OBJECTIVES:          |                |                          |
| On completion of this lesson the student shall be able to:                                        |                      |                |                          |
| 1. Design canopy.                                                                                 |                      |                |                          |
| TEACHING AIDS: White board, Marker pens and Code book                                             |                      |                |                          |
|                                                                                                   |                      |                |                          |
| Sub topics Design of beam and slab for canopy. Main reinforcement and distribution reinforcement. |                      |                |                          |
|                                                                                                   | 1,0                  |                |                          |
|                                                                                                   |                      |                |                          |
|                                                                                                   |                      |                |                          |

Assignment / Questions: 1. Design canopy for the given data.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                                                                                                                                      | : 2021-22                 |                  |                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|--------------------------|
| Semester                                                                                                                                                           | : I                       |                  |                          |
| Name of the Program: B.Tec                                                                                                                                         | n Civil Engineering       | Year: III        | Section: A               |
| Course/Subject: Design of Co                                                                                                                                       | oncrete Structures-I      |                  | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.Si                                                                                                                                       | inivas / Mr.K.VEERA       | BABU             | Dept.: Civil Engineering |
| Designation: Professor / Assi                                                                                                                                      | stant Professor           |                  |                          |
| Lesson No: 35                                                                                                                                                      | Durat                     | ion of Lesson:   | <u>1hr</u>               |
| Lesson Title: Design of axia                                                                                                                                       | columns.                  |                  |                          |
| INSTRUCTIONAL/LESSON                                                                                                                                               | NOBJECTIVES:              |                  |                          |
| On completion of this lesson the student shall be able to:                                                                                                         |                           |                  |                          |
| 1. Design axial column.                                                                                                                                            |                           |                  |                          |
| TEACHING AIDS: White b                                                                                                                                             | oard, Marker pens and     | Code book        |                          |
| TEACHING POINTS :                                                                                                                                                  |                           |                  |                          |
| Sub topics                                                                                                                                                         |                           |                  |                          |
| Longitudinar reinforcemen                                                                                                                                          | t, Laterar ties and I ite | ш.               |                          |
|                                                                                                                                                                    |                           |                  |                          |
|                                                                                                                                                                    |                           |                  |                          |
| Lesson No: 35  Lesson Title: Design of axia  INSTRUCTIONAL/LESSON  On completion of this lesson  1. Design axial column.  TEACHING AIDS: White b  TEACHING POINTS: |                           | le to: Code book |                          |

Assignment / Questions: 1. Compile the steps involved in the design of axial columns.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                              | : 2021-22                |                 |                          |
|------------------------------------------------------------|--------------------------|-----------------|--------------------------|
| Semester                                                   | : I                      |                 |                          |
| Name of the Program: B.Tecl                                | n Civil Engineering      | Year: III       | Section: A               |
| Course/Subject: Design of Co                               | oncrete Structures-I     |                 | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.Sr                               | inivas / Mr.K.VEERA      | BABU            | Dept.: Civil Engineering |
| Designation: Professor / Assi                              | stant Professor          |                 |                          |
| Lesson No: 36                                              | Durat                    | tion of Lesson: | <u>1hr</u>               |
| Lesson Title: <u>Axial columns</u>                         | problem.                 |                 |                          |
| INSTRUCTIONAL/LESSON                                       | NOBJECTIVES:             |                 |                          |
| On completion of this lesson the student shall be able to: |                          |                 |                          |
| 1. Design axial column.                                    |                          |                 |                          |
| TEACHING AIDS: White b                                     | oard, Marker pens and    | l Code book     |                          |
| TEACHING POINTS :                                          |                          |                 |                          |
| Sub topics Longitudinal reinforcemen                       | t, Lateral ties and Pitc | h.              |                          |
|                                                            |                          |                 |                          |
|                                                            |                          |                 |                          |
| A 1 D                                                      |                          | . f 41 t.       | 1                        |

Assignment / Questions: 1. Design the axial column for the given data.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                                                          | : 2021-22              |                  |                           |  |
|----------------------------------------------------------------------------------------|------------------------|------------------|---------------------------|--|
| Semester                                                                               | : I                    |                  |                           |  |
| Name of the Program: B.Tech                                                            | n Civil Engineering    | Year: III        | Section: A                |  |
| Course/Subject: Design of Co                                                           | oncrete Structures-I   |                  | Course Code: GR18A3003    |  |
| Name of the Faculty: Dr.T.Sr                                                           | inivas / Mr.K.VEERA    | BABU             | Dept.: Civil Engineering  |  |
| Designation: Professor / Assis                                                         | stant Professor        |                  |                           |  |
| Lesson No: 37                                                                          | Durat                  | tion of Lesson:  | <u>1hr</u>                |  |
| Lesson Title: Design of colum                                                          | mns subjected to comb  | bined axial load | and uni axial bending     |  |
| INSTRUCTIONAL/LESSON OBJECTIVES:                                                       |                        |                  |                           |  |
| On completion of this lesson the student shall be able to:                             |                        |                  |                           |  |
| 1. Design columns subjected to combined axial load and uni axial bending.              |                        |                  |                           |  |
| TEACHING AIDS: White board, Marker pens and Code book                                  |                        |                  |                           |  |
| TEACHING POINTS :                                                                      |                        |                  |                           |  |
| Sub topics Longitudinal reinforcement, Pu-Mu charts, Mux, Muy, Lateral ties and Pitch. |                        |                  |                           |  |
| Assignment / Questions: 1. C                                                           | ompile the steps invol | ved in the desig | gn of column subjected to |  |

Assignment / Questions: 1. Compile the steps involved in the design of column subjected to combined axial load and uni axial bending.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                                                | : 2021-22            |                 |                          |
|------------------------------------------------------------------------------|----------------------|-----------------|--------------------------|
| Semester                                                                     | : I                  |                 |                          |
| Name of the Program: B.Tec                                                   | n Civil Engineering  | Year: III       | Section: A               |
| Course/Subject: Design of Co                                                 | oncrete Structures-I |                 | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.Sı                                                 | rinivas / Mr.K.VEERA | A BABU          | Dept.: Civil Engineering |
| Designation: Professor / Assi                                                | stant Professor      |                 |                          |
| Lesson No: 38                                                                | Dura                 | tion of Lesson: | <u>1hr</u>               |
| Lesson Title: Problem solvin                                                 | <u>g.</u>            |                 |                          |
| INSTRUCTIONAL/LESSON                                                         | NOBJECTIVES:         |                 |                          |
| On completion of this lesson the student shall be able to:                   |                      |                 |                          |
| 1. Design of columns subjected to combined axial load and uni axial bending. |                      |                 |                          |
| TEACHING AIDS: White board, Marker pens and Code book                        |                      |                 |                          |
| TEACHING POINTS :                                                            |                      |                 |                          |
| Sub topics Longitudinal reinforcement, Mux, Muy                              |                      |                 |                          |
|                                                                              | , , , <b>,</b>       |                 |                          |
|                                                                              |                      |                 |                          |
|                                                                              |                      |                 |                          |

Assignment / Questions: 1. Design the column for the given data.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                                                | : 2021-22                   |                 |                          |
|------------------------------------------------------------------------------|-----------------------------|-----------------|--------------------------|
| Semester                                                                     | : I                         |                 |                          |
| Name of the Program: B.Tech                                                  | n Civil Engineering         | Year: III       | Section: A               |
| Course/Subject: Design of Co                                                 | oncrete Structures-I        |                 | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.Sr                                                 | inivas / Mr.K.VEER <i>A</i> | A BABU          | Dept.: Civil Engineering |
| Designation: Professor / Assis                                               | stant Professor             |                 |                          |
| Lesson No: 39                                                                | Dura                        | tion of Lesson: | <u>1hr</u>               |
| Lesson Title: Problem solvin                                                 | <u>g.</u>                   |                 |                          |
| INSTRUCTIONAL/LESSON                                                         | OBJECTIVES:                 |                 |                          |
| On completion of this lesson the student shall be able to:                   |                             |                 |                          |
| 1. Design of columns subjected to combined axial load and uni axial bending. |                             |                 |                          |
| TEACHING AIDS: White board, Marker pens and Code book                        |                             |                 |                          |
| TEACHING POINTS :                                                            |                             |                 |                          |
| Sub topics Lateral ties, pitch and check                                     | k for safety                |                 |                          |
| Laterar ties, piten and ence                                                 | k for safety                |                 |                          |
|                                                                              |                             |                 |                          |
|                                                                              |                             |                 |                          |
|                                                                              |                             |                 |                          |

Assignment / Questions: 1. Design the column for the given data.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                                                          | : 2021-22              |                  |                          |  |
|----------------------------------------------------------------------------------------|------------------------|------------------|--------------------------|--|
| Semester                                                                               | : I                    |                  |                          |  |
| Name of the Program: B.Tech                                                            | n Civil Engineering    | Year: III        | Section: A               |  |
| Course/Subject: Design of Co                                                           | oncrete Structures-I   |                  | Course Code: GR18A3003   |  |
| Name of the Faculty: Dr.T.Sr                                                           | inivas / Mr.K.VEERA    | BABU             | Dept.: Civil Engineering |  |
| Designation: Professor / Assis                                                         | stant Professor        |                  |                          |  |
| Lesson No: 40                                                                          | Durat                  | ion of Lesson:   | <u>1hr</u>               |  |
| Lesson Title: Design of colu                                                           | mns subjected to comb  | oined axial load | and bi axial bending     |  |
| INSTRUCTIONAL/LESSON OBJECTIVES:                                                       |                        |                  |                          |  |
| On completion of this lesson the student shall be able to:                             |                        |                  |                          |  |
| 1. Design columns subjected to combined axial load and bi axial bending.               |                        |                  |                          |  |
| TEACHING AIDS: White board, Marker pens and Code book                                  |                        |                  |                          |  |
| TEACHING POINTS :                                                                      |                        |                  |                          |  |
| Sub topics Longitudinal reinforcement, Pu-Mu charts, Mux, Muy, Lateral ties and Pitch. |                        |                  |                          |  |
| Assignment / Questions: 1. D                                                           | esign the column for t | he given data.   |                          |  |



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                              | : 2021-22                 |                 |                          |  |
|------------------------------------------------------------|---------------------------|-----------------|--------------------------|--|
| Semester                                                   | : I                       |                 |                          |  |
| Name of the Program: B.Tecl                                | n Civil Engineering       | Year: III       | Section: A               |  |
| Course/Subject: Design of Co                               | oncrete Structures-I      |                 | Course Code: GR18A3003   |  |
| Name of the Faculty: Dr.T.Sr                               | inivas / Mr.K.VEERA       | ABABU           | Dept.: Civil Engineering |  |
| Designation: Professor / Assi                              | stant Professor           |                 |                          |  |
| Lesson No: 41                                              | Durat                     | tion of Lesson: | <u>1hr</u>               |  |
| Lesson Title: <u>Introduction ab</u>                       | out footings.             |                 |                          |  |
| INSTRUCTIONAL/LESSON                                       | NOBJECTIVES:              |                 |                          |  |
| On completion of this lesson the student shall be able to: |                           |                 |                          |  |
| 1. Categorize the footings.                                |                           |                 |                          |  |
| TEACHING AIDS: White b                                     | oard, Marker pens and     | l Code book     |                          |  |
| TEACHING POINTS :                                          |                           |                 |                          |  |
| Sub topics Types of footings. Stepped                      | , flat and sloped footing | ngs.            |                          |  |
|                                                            | <del>-</del>              |                 |                          |  |
|                                                            |                           |                 |                          |  |
| A :                                                        | 1 :6 (1 6 (: 1            | 1 1 '           | 1 1 2                    |  |

Assignment / Questions: 1. Classify the footings based on shape in plan and section.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                                   | : 2021-22             |                 |                                   |  |
|-----------------------------------------------------------------|-----------------------|-----------------|-----------------------------------|--|
| Semester                                                        | : I                   |                 |                                   |  |
| Name of the Program: B.Tec                                      | h Civil Engineering   | Year: III       | Section: A                        |  |
| Course/Subject: Design of Co                                    | oncrete Structures-I  |                 | Course Code: GR18A3003            |  |
| Name of the Faculty: Dr.T.Si                                    | rinivas / Mr.K.VEERA  | ABABU           | Dept.: Civil Engineering          |  |
| Designation: Professor / Assi                                   | stant Professor       |                 |                                   |  |
| Lesson No: 42                                                   | Dura                  | tion of Lesson: | <u>1hr</u>                        |  |
| Lesson Title: Design of Isola                                   | ated square footing.  |                 |                                   |  |
| INSTRUCTIONAL/LESSON OBJECTIVES:                                |                       |                 |                                   |  |
| On completion of this lesson the student shall be able to:      |                       |                 |                                   |  |
| 1. Design Isolated square foo                                   | ting.                 |                 |                                   |  |
| TEACHING AIDS: White b                                          | oard, Marker pens and | l Code book     |                                   |  |
| TEACHING POINTS :                                               |                       |                 |                                   |  |
| Sub topics Size of footing, Moment o two way shear and transfer | · ·                   | *               | heck for one way shear, check for |  |

Assignment / Questions: 1. Compile the steps involved in the design of isolated square footing.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                                    | : 2021-22            |                |                                   |  |
|------------------------------------------------------------------|----------------------|----------------|-----------------------------------|--|
| Semester                                                         | : I                  |                |                                   |  |
| Name of the Program: B.Tec                                       | h Civil Engineering  | Year: III      | Section: A                        |  |
| Course/Subject: Design of Co                                     | oncrete Structures-I |                | Course Code: GR18A3003            |  |
| Name of the Faculty: Dr.T.Sı                                     | rinivas / Mr.K.VEERA | BABU           | Dept.: Civil Engineering          |  |
| Designation: Professor / Assi                                    | stant Professor      |                |                                   |  |
| Lesson No: 43                                                    | Durat                | ion of Lesson: | <u>1hr</u>                        |  |
| Lesson Title: <u>Problem solvir</u>                              | ı <u>g.</u>          |                |                                   |  |
| INSTRUCTIONAL/LESSON OBJECTIVES:                                 |                      |                |                                   |  |
| On completion of this lesson the student shall be able to:       |                      |                |                                   |  |
| 1. Design Isolated square footing.                               |                      |                |                                   |  |
| TEACHING AIDS: White board, Marker pens and Code book            |                      |                |                                   |  |
| TEACHING POINTS :                                                |                      |                |                                   |  |
| Sub topics Size of footing, Moment of two way shear and transfer |                      |                | neck for one way shear, check for |  |
|                                                                  |                      |                |                                   |  |
|                                                                  |                      |                |                                   |  |

Assignment / Questions: 1. Design Isolated square footing for the given data.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year : 2021-22                                                                                                        |                                    |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Semester : I                                                                                                                   |                                    |
| Name of the Program: B.Tech Civil Engineering Year: III                                                                        | Section: A                         |
| Course/Subject: Design of Concrete Structures-I                                                                                | Course Code: GR18A3003             |
| Name of the Faculty: Dr.T.Srinivas / Mr.K.VEERA BABU                                                                           | Dept.: Civil Engineering           |
| Designation: Professor / Assistant Professor                                                                                   |                                    |
| Lesson No: 44                                                                                                                  | ı: <u>1hr</u>                      |
| Lesson Title: Design of Isolated Rectangular footing.                                                                          |                                    |
| INSTRUCTIONAL/LESSON OBJECTIVES:                                                                                               |                                    |
| On completion of this lesson the student shall be able to:                                                                     |                                    |
| 1. Design Isolated rectangular footing.                                                                                        |                                    |
| TEACHING AIDS: White board, Marker pens and Code book                                                                          |                                    |
| TEACHING POINTS :                                                                                                              |                                    |
| Sub topics Size of footing, Moment of resistance, Area of reinforcement, two way shear and transfer of load at base of column. | check for one way shear, check for |

Assignment / Questions: 1. Compile the steps involved in the design of isolated rectangular footing.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                                    | : 2021-22                 |                 |                                   |  |
|------------------------------------------------------------------|---------------------------|-----------------|-----------------------------------|--|
| Semester                                                         | : I                       |                 |                                   |  |
| Name of the Program: B.Te                                        | ch Civil Engineering      | Year: III       | Section: A                        |  |
| Course/Subject: Design of C                                      | Concrete Structures-I     |                 | Course Code: GR18A3003            |  |
| Name of the Faculty: Dr.T.S                                      | Srinivas / Mr.K.VEER      | A BABU          | Dept.: Civil Engineering          |  |
| Designation: Professor / Ass                                     | sistant Professor         |                 |                                   |  |
| Lesson No: 45                                                    | Dura                      | tion of Lesson: | <u>1hr</u>                        |  |
| Lesson Title: Problem solvi                                      | ng.                       |                 |                                   |  |
| INSTRUCTIONAL/LESSO                                              | N OBJECTIVES:             |                 |                                   |  |
| On completion of this lesson                                     | n the student shall be al | ble to:         |                                   |  |
| 1. Design Isolated rectangular footing.                          |                           |                 |                                   |  |
| TEACHING AIDS: White board, Marker pens and Code book            |                           |                 |                                   |  |
| TEACHING POINTS :                                                |                           |                 |                                   |  |
| Sub topics Size of footing, Moment of two way shear and transfer |                           |                 | heck for one way shear, check for |  |
|                                                                  |                           |                 |                                   |  |

Assignment / Questions: 1. Design Isolated rectangular footing for the given data.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                                    | : 2021-22               |                 |                                   |  |
|------------------------------------------------------------------|-------------------------|-----------------|-----------------------------------|--|
| Semester                                                         | : I                     |                 |                                   |  |
| Name of the Program: B.Tecl                                      | n Civil Engineering     | Year: III       | Section: A                        |  |
| Course/Subject: Design of Co                                     | oncrete Structures-I    |                 | Course Code: GR18A3003            |  |
| Name of the Faculty: Dr.T.Sr                                     | inivas / Mr.K.VEERA     | BABU            | Dept.: Civil Engineering          |  |
| Designation: Professor / Assi                                    | stant Professor         |                 |                                   |  |
| Lesson No: 46                                                    | Durat                   | tion of Lesson: | <u>1hr</u>                        |  |
| Lesson Title: <u>Design of Isola</u>                             | ted circular footing.   |                 |                                   |  |
| INSTRUCTIONAL/LESSON OBJECTIVES:                                 |                         |                 |                                   |  |
| On completion of this lesson                                     | the student shall be ab | ole to:         |                                   |  |
| 1. Design Isolated circular footing.                             |                         |                 |                                   |  |
| TEACHING AIDS: White board, Marker pens and Code book            |                         |                 |                                   |  |
| TEACHING POINTS :                                                |                         |                 |                                   |  |
| Sub topics Size of footing, Moment of two way shear and transfer |                         |                 | neck for one way shear, check for |  |
|                                                                  |                         |                 |                                   |  |

Assignment / Questions: 1. Compile the steps involved in the design of isolated circular footing.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                                    | : 2021-22               |                |                                   |  |
|------------------------------------------------------------------|-------------------------|----------------|-----------------------------------|--|
| Semester                                                         | : I                     |                |                                   |  |
| Name of the Program: B.Tech                                      | n Civil Engineering     | Year: III      | Section: A                        |  |
| Course/Subject: Design of Co                                     | oncrete Structures-I    |                | Course Code: GR18A3003            |  |
| Name of the Faculty: Dr.T.Sr                                     | inivas / Mr.K.VEERA     | BABU           | Dept.: Civil Engineering          |  |
| Designation: Professor / Assis                                   | stant Professor         |                |                                   |  |
| Lesson No: 47                                                    | Durat                   | ion of Lesson: | <u>1hr</u>                        |  |
| Lesson Title: Design of com                                      | pined footing.          |                |                                   |  |
| INSTRUCTIONAL/LESSON OBJECTIVES:                                 |                         |                |                                   |  |
| On completion of this lesson                                     | the student shall be ab | le to:         |                                   |  |
| 1. Design combined footing.                                      |                         |                |                                   |  |
| TEACHING AIDS: White board, Marker pens and Code book            |                         |                |                                   |  |
|                                                                  |                         |                |                                   |  |
| Sub topics Size of footing, Moment of two way shear and transfer |                         |                | heck for one way shear, check for |  |
|                                                                  |                         |                |                                   |  |
|                                                                  |                         |                |                                   |  |

Assignment / Questions: 1. Compile the steps involved in the design of combined footing.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                                                                      | : 2021-22               |                  |                          |  |
|----------------------------------------------------------------------------------------------------|-------------------------|------------------|--------------------------|--|
| Semester                                                                                           | : I                     |                  |                          |  |
| Name of the Program: B.Tecl                                                                        | n Civil Engineering     | Year: III        | Section: A               |  |
| Course/Subject: Design of Co                                                                       | oncrete Structures-I    |                  | Course Code: GR18A3003   |  |
| Name of the Faculty: Dr.T.Sr                                                                       | inivas / Mr.K.VEERA     | BABU             | Dept.: Civil Engineering |  |
| Designation: Professor / Assis                                                                     | stant Professor         |                  |                          |  |
| Lesson No: 48                                                                                      | Durat                   | ion of Lesson:   | <u>1hr</u>               |  |
| Lesson Title: <u>Introduction ab</u>                                                               | out Limit state design  | for serviceabil  | ity.                     |  |
| INSTRUCTIONAL/LESSON                                                                               | OBJECTIVES:             |                  |                          |  |
| On completion of this lesson the student shall be able to:                                         |                         |                  |                          |  |
| 1. Classify the Limit state of serviceability.                                                     |                         |                  |                          |  |
| TEACHING AIDS: White board, Marker pens and Code book                                              |                         |                  |                          |  |
| TEACHING POINTS :                                                                                  |                         |                  |                          |  |
| Sub topics Limit state of deflection, cracking, vibration and creep. Factors affecting deflection. |                         |                  |                          |  |
|                                                                                                    |                         |                  |                          |  |
| Assignment / Questions: 1. C                                                                       | lassify the Limit state | of serviceabilit | y.                       |  |



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                              | : 2021-22            |                 |                          |
|------------------------------------------------------------|----------------------|-----------------|--------------------------|
| Semester                                                   | : I                  |                 |                          |
| Name of the Program: B.Tecl                                | n Civil Engineering  | Year: III       | Section: A               |
| Course/Subject: Design of Co                               | oncrete Structures-I |                 | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.Sr                               | inivas / Mr.K.VEERA  | BABU            | Dept.: Civil Engineering |
| Designation: Professor / Assi                              | stant Professor      |                 |                          |
| Lesson No: 49                                              | Durat                | tion of Lesson: | <u>1hr</u>               |
| Lesson Title: Limit state Des                              | sign for deflection. |                 |                          |
| INSTRUCTIONAL/LESSON                                       | NOBJECTIVES:         |                 |                          |
| On completion of this lesson the student shall be able to: |                      |                 |                          |
| 1. Design the beam for limit state design of deflection.   |                      |                 |                          |
| TEACHING AIDS: White board, Marker pens and Code book      |                      |                 |                          |
| TEACHING POINTS :                                          |                      |                 |                          |
| Sub topics Short term and long term deflection.            |                      |                 |                          |
|                                                            |                      |                 |                          |
|                                                            |                      |                 |                          |
| A : 1/0 /: 1 D                                             |                      |                 | C 1 Cl                   |

Assignment / Questions: 1. Design the beam for limit state design of deflection.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                        | : 2021-22                                           |                |                          |  |
|--------------------------------------|-----------------------------------------------------|----------------|--------------------------|--|
| Semester                             | : I                                                 |                |                          |  |
| Name of the Program: B.Tecl          | n Civil Engineering                                 | Year: III      | Section: A               |  |
| Course/Subject: Design of Co         | oncrete Structures-I                                |                | Course Code: GR18A3003   |  |
| Name of the Faculty: Dr.T.Sr         | inivas / Mr.K.VEERA                                 | BABU           | Dept.: Civil Engineering |  |
| Designation: Professor / Assis       | stant Professor                                     |                |                          |  |
| Lesson No: 50                        | Durat                                               | ion of Lesson: | <u>1hr</u>               |  |
| Lesson Title: <u>Limit state Des</u> | ign for creep.                                      |                |                          |  |
| INSTRUCTIONAL/LESSON                 | OBJECTIVES:                                         |                |                          |  |
| On completion of this lesson         | the student shall be ab                             | le to:         |                          |  |
| 1. Design the beam for limit s       | 1. Design the beam for limit state design of creep. |                |                          |  |
| TEACHING AIDS: White be              | oard, Marker pens and                               | Code book      |                          |  |
| TEACHING POINTS :                    |                                                     |                |                          |  |
| Sub topics                           |                                                     |                |                          |  |
| Стеер                                |                                                     |                |                          |  |
|                                      |                                                     |                |                          |  |
|                                      |                                                     |                |                          |  |
| Sub topics<br>Creep                  |                                                     |                |                          |  |

Assignment / Questions: 1. Design the beam for limit state design of creep.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                           | : 2021-22               |                 |                          |
|---------------------------------------------------------|-------------------------|-----------------|--------------------------|
| Semester                                                | : I                     |                 |                          |
| Name of the Program: B.Tecl                             | n Civil Engineering     | Year: III       | Section: A               |
| Course/Subject: Design of Co                            | oncrete Structures-I    |                 | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.Sr                            | rinivas / Mr.K.VEERA    | BABU            | Dept.: Civil Engineering |
| Designation: Professor / Assi                           | stant Professor         |                 |                          |
| Lesson No: 51                                           | Durat                   | tion of Lesson: | <u>1hr</u>               |
| Lesson Title: Limit state Des                           | sign for vibration.     |                 |                          |
| INSTRUCTIONAL/LESSON                                    | NOBJECTIVES:            |                 |                          |
| On completion of this lesson                            | the student shall be ab | ole to:         |                          |
| 1. Design the beam for limit state design of vibration. |                         |                 |                          |
| TEACHING AIDS: White board, Marker pens and Code book   |                         |                 |                          |
| TEACHING POINTS :                                       |                         |                 |                          |
| Sub topics<br>Vibration                                 |                         |                 |                          |
| Violation                                               |                         |                 |                          |
|                                                         |                         |                 |                          |
|                                                         |                         |                 |                          |
|                                                         |                         |                 |                          |

Assignment / Questions: 1. Design the beam for limit state design of vibration.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                         | : 2021-22               |                 |                          |
|-------------------------------------------------------|-------------------------|-----------------|--------------------------|
| Semester                                              | : I                     |                 |                          |
| Name of the Program: B.Tech                           | n Civil Engineering     | Year: III       | Section: A               |
| Course/Subject: Design of Co                          | oncrete Structures-I    |                 | Course Code: GR18A3003   |
| Name of the Faculty: Dr.T.Sr                          | inivas / Mr.K.VEERA     | BABU            | Dept.: Civil Engineering |
| Designation: Professor / Assis                        | stant Professor         |                 |                          |
| Lesson No: 52                                         | Durat                   | tion of Lesson: | <u>1hr</u>               |
| Lesson Title: <u>Problem solvin</u>                   | <u>g.</u>               |                 |                          |
| INSTRUCTIONAL/LESSON                                  | OBJECTIVES:             |                 |                          |
| On completion of this lesson                          | the student shall be ab | le to:          |                          |
| 1. Design the beam for Limit state of serviceability. |                         |                 |                          |
| TEACHING AIDS: White board, Marker pens and Code book |                         |                 |                          |
| TEACHING POINTS :                                     |                         |                 |                          |
| Sub topics Limit state of serviceability              |                         |                 |                          |
|                                                       |                         |                 |                          |
|                                                       |                         |                 |                          |
|                                                       |                         |                 |                          |

Assignment / Questions: 1. Design the beam for Limit state of serviceability for the given data.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                              | : 2021-22               |                  |                                |
|------------------------------------------------------------|-------------------------|------------------|--------------------------------|
| Semester                                                   | : I                     |                  |                                |
| Name of the Program: B.Tech                                | n Civil Engineering     | Year: III        | Section: A                     |
| Course/Subject: Design of Co                               | oncrete Structures-I    |                  | Course Code: GR18A3003         |
| Name of the Faculty: Dr.T.Sr                               | inivas / Mr.K.VEERA     | BABU             | Dept.: Civil Engineering       |
| Designation: Professor / Assis                             | stant Professor         |                  |                                |
| Lesson No: 53                                              | Durat                   | ion of Lesson:   | <u>1hr</u>                     |
| Lesson Title: <u>Problem solvin</u>                        | <u>g.</u>               |                  |                                |
| INSTRUCTIONAL/LESSON                                       | OBJECTIVES:             |                  |                                |
| On completion of this lesson                               | the student shall be ab | le to:           |                                |
| 1. Design the beam for Limit state of serviceability.      |                         |                  |                                |
| TEACHING AIDS: White board, Marker pens and Code book      |                         |                  |                                |
| TEACHING POINTS : Sub topics Limit state of serviceability | 7                       |                  |                                |
| Assignment / Questions: 1 D                                | asian the beam for Liv  | mit state of sam | vigashility for the given data |

Assignment / Questions: 1. Design the beam for Limit state of serviceability for the given data.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                                              | : 2021-22                                             |                 |                          |  |
|------------------------------------------------------------|-------------------------------------------------------|-----------------|--------------------------|--|
| Semester                                                   | : I                                                   |                 |                          |  |
| Name of the Program: B.Tecl                                | n Civil Engineering                                   | Year: III       | Section: A               |  |
| Course/Subject: Design of Co                               | oncrete Structures-I                                  |                 | Course Code: GR18A3003   |  |
| Name of the Faculty: Dr.T.Sr                               | inivas / Mr.K.VEERA                                   | BABU            | Dept.: Civil Engineering |  |
| Designation: Professor / Assi                              | stant Professor                                       |                 |                          |  |
| Lesson No: 54                                              | Durat                                                 | tion of Lesson: | <u>1hr</u>               |  |
| Lesson Title: <u>Problem solvin</u>                        | <u>g.</u>                                             |                 |                          |  |
| INSTRUCTIONAL/LESSON                                       | NOBJECTIVES:                                          |                 |                          |  |
| On completion of this lesson the student shall be able to: |                                                       |                 |                          |  |
| 1. Design the slab for Limit state of serviceability.      |                                                       |                 |                          |  |
| TEACHING AIDS: White be                                    | TEACHING AIDS: White board, Marker pens and Code book |                 |                          |  |
| TEACHING POINTS :                                          |                                                       |                 |                          |  |
| Sub topics                                                 |                                                       |                 |                          |  |
| Limit state of serviceability                              | 7                                                     |                 |                          |  |
|                                                            |                                                       |                 |                          |  |
|                                                            |                                                       |                 |                          |  |
|                                                            |                                                       |                 |                          |  |

Assignment / Questions: 1. Design the slab for Limit state of serviceability for the given data.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **LESSON PLAN**

| Academic Year                            | : 2021-22               |             |                          |  |  |  |  |  |  |  |
|------------------------------------------|-------------------------|-------------|--------------------------|--|--|--|--|--|--|--|
| Semester                                 | : I                     |             |                          |  |  |  |  |  |  |  |
| Name of the Program: B.Tecl              | n Civil Engineering     | Year: III   | Section: A               |  |  |  |  |  |  |  |
| Course/Subject: Design of Co             | oncrete Structures-I    |             | Course Code: GR18A3003   |  |  |  |  |  |  |  |
| Name of the Faculty: Dr.T.Sr             | inivas / Mr.K.VEERA     | BABU        | Dept.: Civil Engineering |  |  |  |  |  |  |  |
| Designation: Professor / Assis           | stant Professor         |             |                          |  |  |  |  |  |  |  |
| Lesson No: 55                            | Lesson No: 55           |             |                          |  |  |  |  |  |  |  |
| Lesson Title: Problem solvin             | <u>g.</u>               |             |                          |  |  |  |  |  |  |  |
| INSTRUCTIONAL/LESSON                     | OBJECTIVES:             |             |                          |  |  |  |  |  |  |  |
| On completion of this lesson             | the student shall be ab | ole to:     |                          |  |  |  |  |  |  |  |
| 1. Design the slab for Limit s           | tate of serviceability. |             |                          |  |  |  |  |  |  |  |
| TEACHING AIDS: White be                  | oard, Marker pens and   | l Code book |                          |  |  |  |  |  |  |  |
| TEACHING POINTS :                        |                         |             |                          |  |  |  |  |  |  |  |
| Sub topics Limit state of serviceability | 7                       |             |                          |  |  |  |  |  |  |  |
| Elimit state of serviceability           | ,                       |             |                          |  |  |  |  |  |  |  |
|                                          |                         |             |                          |  |  |  |  |  |  |  |
|                                          |                         |             |                          |  |  |  |  |  |  |  |
|                                          |                         |             |                          |  |  |  |  |  |  |  |

Assignment / Questions: 1. Design the slab for Limit state of serviceability for the given data.



### Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **TUTORIAL SHEET - 1**

Academic Year : 2021-22

Semester : I

Name of the Program: B.Tech Civil Engineering Year: III Section: A

Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: Dr.T.Srinivas / Mr.K.VEERA BABU Dept.: Civil Engineering

Designation: Professor / Assistant Professor

This Tutorial corresponds to Unit No. / Lesson: One

Q1. Explain about stress block parameters.

Q2. Illustrate about. a. Balanced section b. Under reinforced section c. Over reinforced section.

Q3. Summarize the stress strain behavior of Steel and concrete with the help of figures.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 1 Outcome Nos.: 1

Signature of HOD



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **TUTORIAL SHEET - 2**

Academic Year : 2021-22

Semester : I

Name of the Program: B.Tech Civil Engineering Year: III Section: A

Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: Dr.T.Srinivas / Mr.K.VEERA BABU Dept.: Civil Engineering

Designation: Professor / Assistant Professor

This Tutorial corresponds to Unit No. / Lesson: <u>Two</u>

- Q1. A rectangular beam is 250mm wide and 400mm deep up to the center of reinforcement. Determine the reinforcement required if it has to resist a working moment of 25kN-m. Use M20 concrete and SAIL:300 HY grade steel.
- Q2. Determine the Moment of resistance of a beam 250mmx500mm deep if it is reinforced with 2 bars of 12mm diameter in compression zone and 4 bars of 20mm diameter in tension zone each at an effective cover of 40mm. Use M25 concrete and Fe415 steel.
- Q3. Design the flanged beam for the given data.

 $b_f=2950$ mm,  $D_f=100$ mm, D=675mm,  $b_w=300$ mm, spacing of beams = 4000mm c/c.

Effective cover to the steel=90mm,  $L_e$ = 12m, L.L = 12kN/m, Concrete=M20, Steel= Fe415 and ends simply supported.

- Q4. Design a section of a ring beam 500mm wide and 700mm deep subjected to a B.M of 130kN-m, T.M of 10kN-m and a shear force of 130kN at ultimate. Use M25 concrete and Fe415 steel.
- Q5. Explain about various modes of shear failures.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 2 Outcome Nos.: 2

Signature of HOD Signature of faculty



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **TUTORIAL SHEET - 3**

Academic Year : 2021-22

Semester : I

Name of the Program: B.Tech Civil Engineering Year: III Section: A

Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: Dr.T.Srinivas / Mr.K.VEERA BABU Dept.: Civil Engineering

Designation: Professor / Assistant Professor

This Tutorial corresponds to Unit No. / Lesson: Three

Q1. Discuss the difference between Design Parameter of Slab and Beam.

- Q2. Design a two way slab when the edges are simply supported for a room 5.5 m x 4.0 m clear in size if the superimposed load is  $5 \text{kN/m}^2$ . Use M20 concrete and Fe415 steel.
- Q3. Design a canopy beam and slab over a 4.5m wide opening. The L.L of canopy may be taken as 750 N/m<sup>2</sup>. Use M20 concrete and Fe415 steel.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 3 Outcome Nos.: 3

Signature of HOD



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **TUTORIAL SHEET - 4**

Academic Year : 2021-22

Semester : I

Name of the Program: B.Tech Civil Engineering Year: III Section: A

Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: Dr.T.Srinivas / Mr.K.VEERA BABU Dept.: Civil Engineering

Designation: Professor / Assistant Professor

This Tutorial corresponds to Unit No. / Lesson: Four

Q1. Design a circular column to carry an axial load of 1500kN using lateral ties. Use M20 concrete and Fe415 steel.

- Q2. Design a R.C. Column 300mmx400mm rectangular to carry an ultimate load of 600kN at an eccentricity of 120mm. Use M20 concrete and Fe415 steel.
- Q3. Design the reinforcement for R.C.C column 250mm x400mm for the given data.

Pu= 100kN, L=6m,  $1_{eff(x)}$  =4.8m,  $1_{eff(y)}$  =4.0m, Mux2= 30kN-m @top, Mux1= 20kN-m @bottom, Muy= 10kN-m @top and bottom. Column is braced and bents in single curvature.

Q4. Design an isolated rectangular footing for a column size of 230mm x 550mm carrying a factored axial load of 1800 kN. Safe bearing capacity of the soil is 120kN/m². Use M20 concrete and Fe415 steel.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 4 Outcome Nos.: 4

Signature of HOD



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **TUTORIAL SHEET - 5**

Academic Year : 2021-22

Semester : I

Name of the Program: B.Tech Civil Engineering Year: III Section: A

Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: Dr.T.Srinivas / Mr.K.VEERA BABU Dept.: Civil Engineering

Designation: Professor / Assistant Professor

This Tutorial corresponds to Unit No. / Lesson: Five

Q1. Design a beam of cross section 350mm x400mm used as a SSB subjected to a central point load of 5kN and full U.D.L of 1kN/m over entire span of 5m. Check for shear and deflection. Use M20 concrete and Fe415 steel

- Q2. Establish the factors affecting short term deflection?
- Q3. Design a beam of cross section 350mm x400mm used as a cantilever subjected to a central point load of 2kN and full U.D.L of 1kN/m over entire span of 6m. Check for shear and deflection. Use M20 concrete and Fe415 steel.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 5
Outcome Nos.: 5

Signature of HOD



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **ASSIGNMENT SHEET - 1**

Academic Year : 2021-22

Semester : I

Name of the Program: B.Tech Civil Engineering Year: III Section: A

Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: Dr.T.Srinivas / Mr.K.VEERA BABU Dept.: Civil Engineering

Designation: Professor / Assistant Professor

This Tutorial corresponds to Unit No. / Lesson: One

Answer any five of the following

- 1. a) Define limit state and list out the types of limit states considered in the design of RC structures.
  - b) Discuss the assumptions in limit state of collapse in flexure.
- 2. Discuss the need for doubly reinforced concrete beam.
- 3. Explain modes of failures of reinforced concrete member.
- 4. Differentiate working stress and limit state method.

Objective Nos.: 1
Outcome Nos.: 1

Signature of HOD Signature of faculty



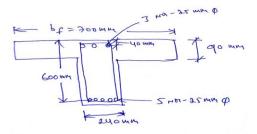
#### Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **ASSIGNMENT SHEET - 2**

Academic Year : 2021-22

Semester : I

Name of the Program: B.Tech Civil Engineering Year: III Section: A


Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: Dr.T.Srinivas / Mr.K.VEERA BABU Dept.: Civil Engineering

Designation: Professor / Assistant Professor

#### Answer all Questions

1. Determine the moment of resistance of T-beam, if the beam carries compression reinforcement as given below in the fig. Use M 20 and Fe 415.



- 2. Verify for bond in a simply supported beam of 230 mm x 4000 mm effective dimensions, it is resting on 300 mm wide supports, subjected to factored shear force of 120 kN at critical section and consists of 5 bars of 12 mm dia on tension side. Adopt M 20 and Fe 415
- 3. Determine the moment of resistance of a singly reinforced concrete beam of rectangular section 230 mm wide and 430 mm deep (effective depth), reinforced with 4 bars of 16 mm dia, use M20 grade of concrete and Fe 415 grade of steel, redesign the beam if necessary.
- 4. Find the reinforcement for the beam section for an applied moment of 68 kN-m, the width of beam is limited to 200 mm, if the depth of the beam is kept equal to the one, obtained from working stress method. Use M20 grade of concrete and Fe 415 grade of steel.

- 5. Simply supported beam of 225 mm wide and 450 mm effective depth carries a u.d.l. of 80 kN/m including its own weight over an effective span of 6 m. The reinforcement consists of 5 bars of 25 mm dia, out of these 2 bars can be safely bent up at 1 m distance from the support. Design the shear reinforcement. Adopt M 20 grade of concrete and Fe 415 grade of steel. Assume width of support as 300 mm.
- 6. Determine the reinforcement required for a rectangular beam section with the following data:
  - Width of section = 230 mm, depth of section = 450 mm, factored B.M = 125 kN-m, factored torsional moment = 50 kN-m, factored S.F. = 80 kN. Adopt M 25 grade of concrete and Fe 415 grade of steel.
- 7. A T beam consists of a flange 1100 mm wide and 120 mm deep. The depth of the beam is 550 mm up to the centre of steel and width of the web is 250 mm. Design the T beam completely for an ultimate moment of 460 kN-m. Use M 25 grade concrete and Fe 415 grade steel.

Objective Nos.: 2 Outcome Nos.: 2

Signature of HOD



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **ASSIGNMENT SHEET - 3**

Academic Year : 2021-22

Semester : I

Name of the Program: <u>B.Tech – Civil Engg.</u> Year: <u>III</u> Section: A & B

Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: <u>Dr. T. SRINIVAS</u>, <u>Mr. K.VEERA BABU</u> Dept.: <u>Civil Engineering</u>

Designation: Professor, Assistant Professor.

Answer all questions

- 1. Design a cantilever canopy for a span of 3 m to cover an area of 5 m x 3 m with rectangular cantilever beams of 230 mm width spaced at 3 m c/c, slab spanning between these beams and having clear overhanging of 0.885 m on either side of the portico. Adopt M 20 and Fe 415. Assume a live load of 1.5 kN/m<sup>2</sup> on the portico roof.
- 2. Design a two way slab when the edges are simply supported for a room  $5.5m \times 4.0m$  clear in size if the superimposed load is  $5kN/m^2$ . Use M20 concrete and Fe415 steel.
- 3. Design a canopy beam and slab over a 4.5m wide opening. The L.L of canopy may be taken as  $750 \text{ N/m}^2$ . Use M20 concrete and Fe415 steel.
- 4. Design the a dog-legged staircase for a room of 5.1 m x 2.5 m with a floor to floor height of 3 m. Assume that staircase is liable to be overcrowded. Adopt M 25 and Fe 415.

Objective Nos.: 3 Outcome Nos.: 3

Signature of HOD



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **ASSIGNMENT SHEET -4**

Academic Year : 2021-22

Semester : I

Name of the Program: <u>B.Tech – Civil Engg.</u> Year: <u>III</u> Section: A & B

Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: <u>Dr. T. SRINIVAS</u>, <u>Mr. K.VEERA BABU</u> Dept.: <u>Civil Engineering</u>

Designation: Professor, Assistant Professor.

#### Answer all questions

- 1. Determine the reinforcement required in a column of 230 mm x 450 mm subjected to an axial factored load of 1100 kN and a factored moment of 28 kN-m about shorter axis. Adopt M20 and Fe415 and assume two sides (shorter sides) reinforcement.
- 2. Design a square column of 300 mm x 300 mm, is subjected to an axial factored load of 1800 kN and factored moments of 28 kN-m and 32 kN-m about the two mutually perpendicular axes respectively. Adopt M 25, Fe 415 and assume an effective cover as 40 mm.
- 3. Design an axially loaded tied column with an unsupported length of 3.1 m. The column is fixed at one end and pinned at the other end. The column has to carry a factored load of 1800 kN. Use M 25 grade of concrete and Fe 415 grade of steel. Sketch the reinforcement details.

Objective Nos.: 4
Outcome Nos.: 4

Signature of HOD Signature of faculty



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **ASSIGNMENT SHEET -5**

| Academic Year                                                                                                       | : 2021-22                                                                                                                                                                                                                                                                                                                                                                          |            |                   |                           |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|---------------------------|--|--|--|--|--|
| Semester                                                                                                            | : I                                                                                                                                                                                                                                                                                                                                                                                |            |                   |                           |  |  |  |  |  |
| Name of the Program: B.Tech –Civi                                                                                   | <u>l Engg</u> .                                                                                                                                                                                                                                                                                                                                                                    | Year: 1    | III               | Section: A & B            |  |  |  |  |  |
| Course/Subject: Design of Concrete                                                                                  | Structures-I                                                                                                                                                                                                                                                                                                                                                                       |            | Course Code:      | GR18A3003                 |  |  |  |  |  |
| Name of the Faculty: <u>Dr. T. SRINIVAS</u>                                                                         | S, Mr. K.VEERA                                                                                                                                                                                                                                                                                                                                                                     | BABU       | Dept.: Civil En   | gineering                 |  |  |  |  |  |
| Designation: Professor, Assistant Profe                                                                             | essor.                                                                                                                                                                                                                                                                                                                                                                             |            |                   |                           |  |  |  |  |  |
| Answer all questions                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                    |            |                   |                           |  |  |  |  |  |
| 1 A rectangular cantilever beam is of subjected to a service load of 12 kN/total moment is due to permanent load    | m in addition to                                                                                                                                                                                                                                                                                                                                                                   | its self v | veight. It may be | assumed that 45% of the   |  |  |  |  |  |
| subjected to a service load of 15 kN/total moment is due to permanent lo                                            | 2. A rectangular cantilever beam is of span 4.5 m and 400 mm x 500 mm in cross section. The beam is subjected to a service load of 15 kN/m in addition to its self weight. It may be assumed that 45% of the total moment is due to permanent loads. The beam is reinforced with 4 no. of 25 mm diameter on the tension side. Check the beam for deflection. Adopt M30 and Fe 415. |            |                   |                           |  |  |  |  |  |
| 3. Design a square isolated flat footing 1300 kN. The S.B.C. of the soil is 25                                      |                                                                                                                                                                                                                                                                                                                                                                                    |            |                   | carrying an axial load of |  |  |  |  |  |
| 4. Design a rectangular isolated footing carrying an axial load of 1600 kN. The plan and sectional elevation of the | he S.B.C. of the                                                                                                                                                                                                                                                                                                                                                                   | soil is 35 | 50 kN /m2 .Use    | M 25 and Fe 415. Sketch   |  |  |  |  |  |
| Objective Nos.: 5<br>Outcome Nos.: 5                                                                                |                                                                                                                                                                                                                                                                                                                                                                                    |            |                   |                           |  |  |  |  |  |
| Signature of HOD                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                    |            |                   | Signature of faculty      |  |  |  |  |  |
| Date:                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                    |            |                   | Date:                     |  |  |  |  |  |
| Date.                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                    |            |                   | Date.                     |  |  |  |  |  |



### Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **EVALUATION STRATEGY**

Academic Year : 2021-22

Semester: I

Name of the Program: B.Tech Civil Engineering Year: III Section: A & B

Course/Subject: Design of Concrete Structures-I Course Code: GR18A3003

Name of the Faculty: Dr.T.Srinivas and K. Veera Babu

Dept.: Civil Engineering

Designation: Professors/Asst. Professor

#### 1. TARGET:

A) Percentage for pass: 90%

b) Percentage of class:

Total Strength: 130

| S.No. | Class / Division             | No. of Students |
|-------|------------------------------|-----------------|
| 1     | First Class with distinction | 75              |
| 2     | First Class                  | 46              |
| 3     | Pass Class                   | 09              |

#### 2. COURSE PLAN& CONTENT DELIVERY

| S.No | Plan             | Brief Description                          |
|------|------------------|--------------------------------------------|
| 1    | Practice classes | 55 Theory classes for Section A, B         |
| 3    | Assignments      | Assignments for solving numerical problems |

#### 3. METHOD OF EVALUATION

#### 3.1 Continuous Assessment Examinations

- Assignments: Assignments to assess the knowledge of the student on the basics and concepts in Concrete, Reinforced Concrete, Loads, Stress block parameters, various elements of frame Slabs, Beams, Columns, Footings, Stairs and limit state of serviceability.
- Seminars: To assess the knowledge of the student in DCS-I.
- Quiz: To assess the knowledge of the student in various concepts and basics of DCS-I.
- Internal Examination: Internal Examinations to assess their overall knowledge in DCS-I.

#### 3.2. Semester/End Examination

To test their abilities in the course Design of Reinforced Concrete Structures and to approve their abilities learnt during the same.

**4.** List out any new topic(s) or any innovation you would like to introduce in teaching the subjects in this Semester.

Introduce drawing of reinforcement details.

Signature of HOD



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **MAPPING**

| GR18A3003/<br>Design of Concrete Structures-I | Course Outcomes |   |   |   |   |  |  |  |
|-----------------------------------------------|-----------------|---|---|---|---|--|--|--|
| Course Objectives                             | 1               | 2 | 3 | 4 | 5 |  |  |  |
| 1                                             | X               |   |   |   |   |  |  |  |
| 2                                             |                 | X |   |   |   |  |  |  |
| 3                                             |                 |   | X |   |   |  |  |  |
| 4                                             |                 |   |   | X |   |  |  |  |
| 5                                             |                 |   |   |   | X |  |  |  |

### **Assessments**

1. Assignment 2. Internal Examination 3. External Examination

4. Practical Projects 5. Viva

| GR18A3003/<br>Design of Concrete Structures-I | Course Outcomes |   |   |   |   |
|-----------------------------------------------|-----------------|---|---|---|---|
| Assessments                                   | 1               | 2 | 3 | 4 | 5 |
| 1                                             | X               | X | X | X | X |
| 2                                             | X               | X | X | X | X |
| 3                                             | X               | X | X | X | X |
| 4                                             |                 |   |   |   |   |
| 5                                             |                 |   |   |   |   |

| GR18A3003/<br>Design of Concrete Structures-I | Course Objectives |   |   |   |   |  |  |
|-----------------------------------------------|-------------------|---|---|---|---|--|--|
| Assessments                                   | 1                 | 2 | 3 | 4 | 5 |  |  |
| 1                                             | X                 | X | X | X | X |  |  |
| 2                                             | X                 | X | X | X | X |  |  |
| 3                                             | X                 | X | X | X | X |  |  |
| 4                                             |                   |   |   |   |   |  |  |
| 5                                             |                   |   |   |   |   |  |  |

| GR18A3003/ Design of Concrete Structures-I                                                              |          |   |   |   |   |    |   |    |   |   |    |   |       |   |
|---------------------------------------------------------------------------------------------------------|----------|---|---|---|---|----|---|----|---|---|----|---|-------|---|
| COs/POs                                                                                                 | A        | В | С | D | E | F  | G | Н  | I | J | K  | L | PSO's |   |
| COS/T OS                                                                                                | <b>A</b> | Ъ |   |   |   | T. | J | ** | 1 | J | 17 |   | 1     | 2 |
| Classify Working Stress     and Limit State method in     design of reinforced     concrete structures. | Н        |   |   | M | Н | M  |   | M  | M |   |    | Н |       | М |
| 2. Analyze and design of beams.                                                                         | Н        | M |   | M |   |    |   | M  | M |   |    | M | M     | M |
| 3. Design of slabs, staircase and canopy.                                                               | Н        | M |   | M |   |    |   | M  | M |   |    | M | M     | M |
| 4. Design of columns.                                                                                   | Н        | M |   | M |   |    |   | M  | M |   |    | M | M     | M |
| 5. Design of footings, beams and slabs for limit state of serviceability.                               | Н        | M |   | M |   |    |   | M  | M |   |    | M | M     | М |



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **RUBRIC TEMPLATE**

Academic Year : 2021-22

Semester : I

Name of the Program: <u>B.Tech Civil Engineering</u> Year: <u>III</u> Section: A / B

Course/Subject: Design of Concrete Structures-I

Course Code: Sub Code: GR18A3003

Name of the Faculty: <u>Dr.T.Srinivas/ K.Veerababu</u> Dept.: <u>Civil Engineering</u>

Designation: <u>Professor/ Asst.Professor</u>

Objective: To learn design aspects of reinforced concrete structures.

Student Outcome: Learn design concepts, use of code, design of elements such as beams,

columns, footings and slabs against strength and serviceability.

|              |                               |                                                          | Beginning                                                             | Developing                                                       | Reflecting<br>Development                           | Accomplishe d                                               | Exemplary                                                             | Score |
|--------------|-------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|-------|
| S.<br>N<br>o | Name<br>of the<br>Stude<br>nt | Performance<br>Criteria                                  | 1                                                                     | 2                                                                | 3                                                   | 4                                                           | 5                                                                     |       |
| 1            | 19241<br>A017<br>9            | The level of knowledge on basic requirements for design  | Low level<br>of<br>knowledge<br>on basic<br>rquirement<br>s of design | Able to<br>discuss<br>the basic<br>requireme<br>nts of<br>design | Ability to explain the basic requirements of design | Full<br>knowledge<br>on basic<br>requiremen<br>ts of design | Analysing and implement ing the knowledg e of requireme nts of design | 5     |
|              | 9                             | The level of knowledge on design of structural elements. | Low level<br>of<br>knowledge<br>on design<br>of<br>structural         | Able to discuss on design of structural elements.                | Ability to explain design of structural elements.   | Full<br>knowledge<br>on design<br>of<br>structural          | Analysing and applicatio n of knowledg e on                           | 5     |

|  |                                                                           | elements.                                                                                      |                                                                             |                                                                | elements.                                                 | design of structural elements.                                                         |   |
|--|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------|---|
|  | The level of knowledge to analyse serviceabili ty of structural elements. | Low level<br>of<br>knowledge<br>to analyse<br>serviceabili<br>ty of<br>structural<br>elements. | Ability to discuss and to study the serviceabil ity of structural elements. | Ability to explain the serviceabili ty of structural elements. | Full knowledge on serviceabili ty of structural elements. | Analysin g and implement ing the knowledg e of serviceabil ity of structural elements. | 5 |
|  |                                                                           |                                                                                                |                                                                             |                                                                | Av                                                        | verage Score                                                                           | 5 |

|              |                               |                                                                                                                    | Beginning                                                                                                        | Developing                                                                                          | Reflecting<br>Development                                                                              | Accomplishe d                                                                                    | Exemplary                                                                                                                                     | Score |
|--------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|
| S.<br>N<br>o | Name<br>of the<br>Stude<br>nt | Performance<br>Criteria                                                                                            | 1                                                                                                                | 2                                                                                                   | 3                                                                                                      | 4                                                                                                | 5                                                                                                                                             |       |
| 1            | 1924<br>1A01<br>61            | The level of knowledge on basic requiremen ts for design  The level of knowledge on design of structural elements. | Low level of knowledge on basic rquirement s of design  Low level of knowledge on design of structural elements. | Able to discuss the basic requirements of design  Able to discuss on design of structural elements. | Ability to explain the basic requirements of design  Ability to explain design of structural elements. | Full knowledge on basic requirements of design  Full knowledge on design of structural elements. | Analysing and implement ing the knowledg e of requirements of design Analysing and application of knowledge on design of structural elements. | 2     |
|              |                               | The level of knowledge                                                                                             | Low level of knowledge                                                                                           | Ability to discuss and to                                                                           | Ability to explain the serviceabili                                                                    | Full<br>knowledge<br>on                                                                          | Analysin g and implement                                                                                                                      | 2     |

|              |                               | to analyse<br>serviceabili<br>ty of<br>structural<br>elements.                                                     | to analyse<br>serviceabili<br>ty of<br>structural<br>elements.                                                   | study the<br>serviceabil<br>ity of<br>structural<br>elements.                                       | ty of<br>structural<br>elements.                                                                       | serviceabili<br>ty of<br>structural<br>elements.                                                 | ing the knowledg e of serviceabil ity of structural elements.                                                                                 | 2     |
|--------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|
|              |                               |                                                                                                                    | Beginning                                                                                                        | Developing                                                                                          | Reflecting<br>Development                                                                              | Accomplishe d                                                                                    | Exemplary                                                                                                                                     | Score |
| S.<br>N<br>o | Name<br>of the<br>Stude<br>nt | Performance<br>Criteria                                                                                            | 1                                                                                                                | 2                                                                                                   | 3                                                                                                      | 4                                                                                                | 5                                                                                                                                             |       |
| 1            | 2024<br>5A01<br>30            | The level of knowledge on basic requiremen ts for design  The level of knowledge on design of structural elements. | Low level of knowledge on basic rquirement s of design  Low level of knowledge on design of structural elements. | Able to discuss the basic requirements of design  Able to discuss on design of structural elements. | Ability to explain the basic requirements of design  Ability to explain design of structural elements. | Full knowledge on basic requirements of design  Full knowledge on design of structural elements. | Analysing and implement ing the knowledg e of requirements of design Analysing and application of knowledge on design of structural elements. | 4     |
|              |                               | The level of knowledge to analyse serviceabili ty of structural elements.                                          | Low level<br>of<br>knowledge<br>to analyse<br>serviceabili<br>ty of<br>structural<br>elements.                   | Ability to discuss and to study the serviceabil ity of structural elements.                         | Ability to explain the serviceabili ty of structural elements.                                         | Full knowledge on serviceabili ty of structural elements.                                        | Analysin g and implement ing the knowledg e of serviceabil ity of structural elements.                                                        | 3     |



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **COURSE COMPLETION STATUS**

Academic Year : 2021-22

Semester : I

Name of the Program: <u>B.Tech Civil Engineering</u> Year: <u>III</u> Section: A

Course/Subject: <u>Design of Concrete Structures-I</u>

Course Code: Sub Code: GR18A3003

Name of the Faculty: <u>Dr.T.Srinivas/ K.Veerababu</u> Dept.: <u>Civil Engineering</u>

Designation: <u>Professor/Asst.Professor</u>

Actual Date of Completion & Remarks, if any

| Units    | Remarks                            | Objectives<br>Achieved | Outcomes<br>Achieved |
|----------|------------------------------------|------------------------|----------------------|
| Unit I   | 16-09-2021<br>Unit covered on time | 1                      | 1                    |
| Unit II  | 06-10-2021<br>Unit covered on time | 2                      | 2                    |
| Unit III | 04-11-2021<br>Unit covered on time | 3                      | 3                    |
| Unit IV  | 17-11-2021<br>Unit covered on time | 4                      | 4                    |
| Unit V   | 10-12-2021<br>Unit covered on time | 5                      | 5                    |

| G, A CHOD        | C' 4 CC 14           |
|------------------|----------------------|
| Signature of HOD | Signature of faculty |
| Signature of HOD | Signature of faculty |
|                  |                      |

Date:

Note: After the completion of each unit mention the number of Objectives & Outcomes Achieved.



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **COURSE COMPLETION STATUS**

Academic Year : 2021-22

Semester : I

Name of the Program: <u>B.Tech Civil Engineering</u> Year: <u>III</u> Section: B

Course/Subject: Design of Concrete Structures-I

Course Code: Sub Code: GR18A3003

Name of the Faculty: <u>Dr.T.Srinivas/ K.Veerababu</u> Dept.: <u>Civil Engineering</u>

Designation: <u>Professor/ Asst.Professor</u>

Actual Date of Completion & Remarks, if any

| Units    | Remarks                            | Objectives<br>Achieved | Outcomes<br>Achieved |
|----------|------------------------------------|------------------------|----------------------|
| Unit I   | 01-09-2021<br>Unit covered on time | 1                      | 1                    |
| Unit II  | 28-09-2021<br>Unit covered on time | 2                      | 2                    |
| Unit III | 27-10-2021<br>Unit covered on time | 3                      | 3                    |
| Unit IV  | 13-11-2021<br>Unit covered on time | 4                      | 4                    |
| Unit V   | 08-12-2021<br>Unit covered on time | 5                      | 5                    |

| Signature of HOD                        | Signature of faculty  |
|-----------------------------------------|-----------------------|
| 215111111111111111111111111111111111111 | Signature of rateurs) |

Date:

Note: After the completion of each unit mention the number of Objectives & Outcomes Achieved.



### Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

#### **Department of Civil Engineering**

**Descriptive Paper (2021-22)** 

III B.Tech. I Semester, I Mid Examinations, October, 2021

Design of Concrete Structures-I (Sub Code: GR18A3003)

Time: 90 Minutes Date of Exam: 19-10-2021 (FN) Max Marks:

15

#### I Answer any Three Questions

| Question No. |                                                                                                                                                                                                                                                                                                                                                                                                              | Marks    | Blooms<br>Levels* | Course<br>Outcome |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|-------------------|
| 1            | <ul><li>a) Define limit state and list out the types of limit states considered in the design of RC structures.</li><li>b) Differentiate working stress and limit state method.</li></ul>                                                                                                                                                                                                                    | 2M<br>3M | BL1<br>BL2        | CO1               |
| 2            | A T – beam consists of a flange 1100 mm wide and 120 mm deep. The depth of the beam is 550 mm up to the centre of steel and width of the web is 250 mm. Design the T – beam completely for an ultimate moment of 460 kN-m. Use M 25 grade concrete and Fe 415 grade steel                                                                                                                                    | 5M       | BL5               | CO2               |
| 3            | Simply supported beam of 225 mm wide and 450 mm effective depth carries a u.d.l. of 80 kN/m including its own weight over an effective span of 6 m. The reinforcement consists of 5 bars of 25 mm dia, out of these 2 bars can be safely bent up at 1 m distance from the support. Design the shear reinforcement. Adopt M 20 grade of concrete and Fe 415 grade of steel. Assume width of support as 300 mm | 5M       | BL3               | CO2               |
| 4            | <ul><li>a) List out the types of slabs.</li><li>b) Explain the behavior of one way and two way</li></ul>                                                                                                                                                                                                                                                                                                     | 2M<br>3M | BL1<br>BL 2       | CO3               |

| slab with neat sketches |  |  |
|-------------------------|--|--|
|                         |  |  |



### Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### **Department of Civil Engineering**

Objective Paper (2021-22)

### III B.Tech. I Semester, I Mid Examinations, October, 2021

Design of Concrete Structures-I (Sub Code: GR18A3003)

|       | Time: 10 Minutes            | Date of Exam              | : 19-10-2021 (FN)        | )           | Ma       | x Ma           | rks: 5   |     |  |
|-------|-----------------------------|---------------------------|--------------------------|-------------|----------|----------------|----------|-----|--|
|       | <b>Answer All Questions</b> |                           | All Que                  | stions C    | arry E   | qual N         | Marks    |     |  |
| Name: |                             | Hall Tick                 | xet No.                  |             |          |                |          |     |  |
| II.   | Choose the correct alto     | ernative:                 | ·                        |             |          |                |          |     |  |
| 1.    | Yield strength of Fe250     | grade steel is            |                          |             |          | [              | ]        |     |  |
|       | A.415 N/mm <sup>2</sup>     | B. 500 N/mm <sup>2</sup>  | C. 550 N/mm <sup>2</sup> | I           | D. 250 I | N/mm           | $n^2$    |     |  |
| 2.    | The maximum strain in       | concrete at the outer me  | ost compression fil      | ber is      |          | [              | ]        |     |  |
|       | A. 0.035                    | B. 0.002                  | C. 0.0035                | I           | D. 0.87/ | f <sub>y</sub> |          |     |  |
| 3.    | The minimum clear cov       | er for slabs as per IS 45 | 56:2000                  |             |          | [              | ]        |     |  |
|       | A. 15 mm                    | B. 20 mm                  | C. 25 mm                 | I           | D. 30 m  | m              |          |     |  |
| 4.    | In a simply supported be    | am of span "l", the max   | imum shear force,        | if it is su | ıbjected | i              |          |     |  |
|       | to uniformly distributed    | l load of "w" kN/m        |                          |             |          | [              | ]        |     |  |
|       | A.0.65wl                    | B. 0.5 wl                 | C. 0.25 wl               | I           | D. wl    |                |          |     |  |
| 5.    | the ratio between longe     | r span to shorter span o  | f slab is greater tha    | an 2, it is | called[  |                | ]        |     |  |
|       | A. Two way slab             | B. One way slab           | C. Flat slab             | I           | D. Ribb  | ed sla         | b        |     |  |
| 6.    | Indian Standard code fo     | r live load is            |                          |             |          | [              | ]        |     |  |
|       | A. 875 (Part2) B. 875       | (Part1) C. 45             | 6 (Part2) D. 456 (       | Part1)      |          |                |          |     |  |
| 7.    | In M25 grade of concre      | te, 25 number means       |                          |             |          | [              | ]        |     |  |
|       | A. $25 \text{ N/m}^2$       | B. 20                     | C. 20 N/mm <sup>2</sup>  | I           | D Testir | ng afte        | er 20 da | ays |  |
| 8.    | Minimum grade of cond       | crete to be used for RCC  | C as per IS 456:200      | 00?         |          | [              | ]        |     |  |
|       | A. M15                      | B. M20 C. M2              | .5                       | D. M30      |          |                |          |     |  |
| 9.    | An effective cover can l    | be defined as             |                          |             |          | [              | ]        |     |  |
|       | A. Clear cover + radius     | s of bar B. Clear cover   | + dia of bar C. Clea     | ar cover    | D. Twi   | e dia          | of bar   |     |  |
| 10.   | Which one of the follow     | ving sections performs b  | etter on ductility of    | criterion   |          | [              | ]        |     |  |
|       | A. Balanced above           | B. Under reinforced       | C. Over                  | reinforce   | ed       | D. Al          | ll the   |     |  |



Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

### Department of Civil Engineering Descriptive Paper (2021-22)

### III B.Tech. I Semester, II Mid Examinations, December, 2021 Design of Concrete Structures-I (Sub Code: GR18A3003)

Time: 90 Minutes Date of Exam: 10-12-2021 (FN) Max Marks: 15

I Answer any Three Questions

| Question No. | r any Three Questions                                                                                                                                                                                                                                                                                                                                                            | Marks | Blooms<br>Levels* | Course<br>Outcome |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|-------------------|
| 1            | Design a cantilever canopy for a span of 3 m to cover an area of 5 m x 3 m with rectangular cantilever beams of 230 mm width spaced at 3 m c/c, slab spanning between these beams and having clear overhanging of 0.885 m on either side of the portico. Adopt M 20 and Fe 415. Assume a live load of 1.5 kN/m2 on the portico roof.                                             | 5M    | BL3               | CO3               |
| 2            | Design an axially loaded rectangular column with an unsupported length of 3.1 m. The column is fixed at one end and pinned at the other end. The column has to carry a factored load of 1800 kN. Use M 25 grade of concrete and Fe 415 grade of steel. Sketch the reinforcement details.                                                                                         | 5M    | BL3               | CO4               |
| 3            | Design a rectangular isolated footing of uniform depth for a column of size 300 mm × 450 mm, carrying an axial load of 1600 kN. The S.B.C. of the soil is 350 kN /m2 .Use M 25 and Fe 415. Sketch the plan and sectional elevation of the footing showing the reinforcement details                                                                                              | 5M    | BL3               | CO5               |
| 4            | A rectangular cantilever beam is of span 3.6 m and 300 mm x 500 mm in cross section. The beam is subjected to a service load of 12 kN/m in addition to its self weight. It may be assumed that 45% of the total moment is due to permanent loads. The beam is reinforced with 4 no. of 20 mm diameter on the tension side. Check the beam for deflection. Adopt M 25 and Fe 415. | 5M    | BL5               | CO5               |



**Answer All Questions** 

## Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

**All Questions Carry Equal Marks** 

#### Department of Civil Engineering Descriptive Paper (2021-22)

#### III B.Tech. I Semester, II Mid Examinations, December, 2021 Design of Concrete Structures-I (Sub Code: GR18A3003)

Time: 10 Minutes Date of Exam: 10-12-2021 (FN) Max Marks: 5

| Name:                             | Н                 | all Ticket No      |               |        |       |      |       |      |      |   |    |  |
|-----------------------------------|-------------------|--------------------|---------------|--------|-------|------|-------|------|------|---|----|--|
| Tune:                             |                   | an Henet 110.      |               |        |       |      |       |      |      |   |    |  |
| II. I. Choose the correct alte    |                   | 2 1                |               |        | • • • | 0    |       | _    |      | - |    |  |
| 1. Maximum percentage of re       | inforcement in c  | case of columns    | as per IS     | 456-   | 200   | 0    |       | Ĺ    |      | J |    |  |
| A. 3                              | B. 6              | C. 2               | D. 1          |        |       |      |       |      |      |   |    |  |
| 2. Minimum clear cover to ma      | ain reinforceme   | nt for RCC slabs   | s in case     | of mi  | ld c  | ond  | litio | n as | s pe | r |    |  |
| IS456-2000                        |                   |                    |               |        |       |      |       | [    |      | ] |    |  |
| A.25 mm                           | B. 50 mm          | C. 20 mm           | D. 40 m       | nm     |       |      |       |      |      |   |    |  |
| 3. Minimum number of longit       |                   |                    | -             | S456-  | -200  | 00   |       | [    |      | ] |    |  |
| A.4                               | B. 6              | C. 5               | D. 7          |        |       |      |       |      |      |   |    |  |
| 4. Maximum allowable thickn       | ess of a structur | ral crack where    | there is a    | seve   | re e  | nvi  | roni  | ment | tal  |   | ct |  |
| as per IS456-2000                 |                   |                    |               |        |       |      |       | [    |      | ] |    |  |
| A.0.1 mm                          | B. 0.3 mm         | C. 0.2 mm          | D. 0.5 r      | nm     |       |      |       |      |      |   |    |  |
| 5. The effective length of a co   | lumn when both    | n ends are pinne   | d             |        |       |      |       | [    |      | ] |    |  |
| A. 1.0 L                          | B.2.0 L           | C. 1.2 L           | D. 0.5 I      |        |       |      |       |      |      |   |    |  |
| 6. The value of k3 in calculation | on of deflection  | due to shrinkage   | e in canti    | lever  | bea   | am   |       | [    |      | ] |    |  |
| A. 0.125                          | B. 0.75           | C. 0.5             | D. 1.0        |        |       |      |       |      |      |   |    |  |
| 7. Creep coefficient at one year  | ar as per IS456-  | 2000 is            |               |        |       |      |       | [    |      | ] |    |  |
| A. 1.6                            | B. 1.1            | C. 2.2             | D. 2.0        |        |       |      |       |      |      |   |    |  |
| 8. Two way slab is defined as     | , when the ratio  | of ly to lx is     |               |        |       |      |       | [    |      | ] |    |  |
| $A. \leq 2$                       | B. >2             | C. =2              | $D. \leq 2.5$ | 5      |       |      |       |      |      |   |    |  |
| 9. The torsion reinforcement of   | can be provided   | over a length of   | f in a        | a two  | wa    | y sl | abs   | [    |      | ] |    |  |
| A. Lx/8                           | B. Lx/4           | C. 3Lx/4           | D. Lx/5       | ;      |       |      |       |      |      |   |    |  |
| 10. Slender column is defined     | as, if its length | to least lateral d | limensio      | n as p | er I  | S45  | 56-2  | 2000 | [    | ] |    |  |
| A. ≤ 12                           | B. > 12           | C. > 6             | D. > 3        |        |       |      |       |      |      |   |    |  |



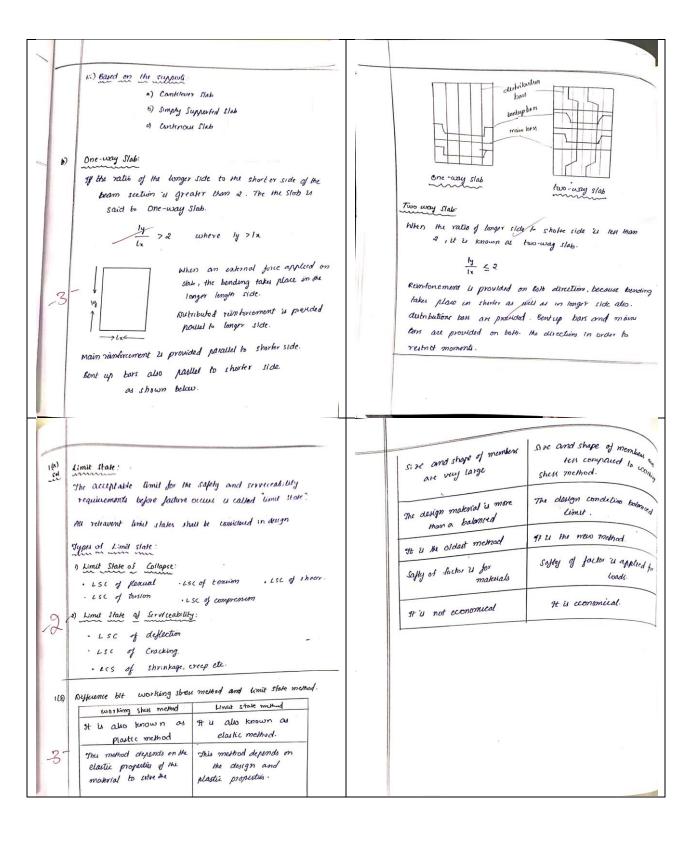
## Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad – 500 090. (040) 6686 4440

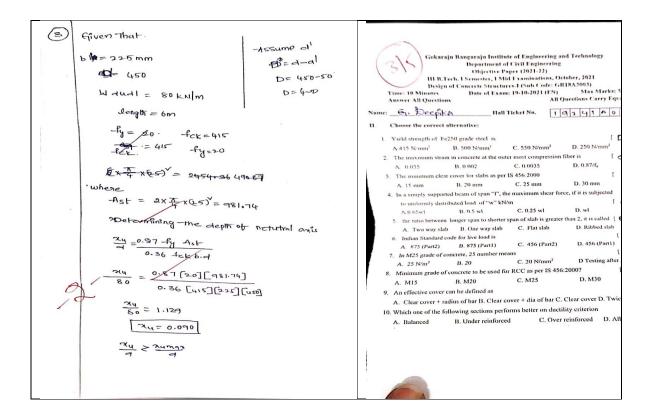
### MID-1 AND M-II MARKS SECTION-A

|      |            | MID I & II EXAM             | MID-I | MID-II |
|------|------------|-----------------------------|-------|--------|
| S.NO | ROLL       | NAME                        | 20    | 20     |
|      | NO.        |                             |       |        |
| 1    | 18241A0151 | SOHEB PATEL                 | 10    | 7      |
| 2    | 18241A0152 | SRIAM SHIVA ADITYA          | AB    | AB     |
| 3    | 19241A0101 | RUHAIL AHMAD LONE           | 4     | 4      |
| 4    | 19241A0102 | AITHA SAI TEJA              | 20    | 19     |
| 5    | 19241A0103 | BARISETTY SHIVA KARTHIK     | 11    | 10     |
| 6    | 19241A0104 | BENDHI VARUN THEJA GOUD     | 15    | 7      |
| 7    | 19241A0105 | BHUKYA VAMSHI               | 13    | 13     |
| 8    | 19241A0106 | BOGE VENKAT ROHITH          | 8     | 5      |
| 9    | 19241A0107 | BONTHA PRANEETHKUMAR        | 15    | 13     |
| 10   | 19241A0108 | CHILUKA RAHUL               | 13    | 12     |
| 11   | 19241A0109 | DANDI KIRAN                 | 16    | 12     |
| 12   | 19241A0110 | DAYYA RAGNESH               | 8     | 6      |
| 13   | 19241A0111 | E MANISH GOUD               | 11    | 6      |
| 14   | 19241A0112 | ERRAM SAI PRIYA             | 14    | 12     |
| 15   | 19241A0113 | G DEEPIKA                   | 13    | 13     |
| 16   | 19241A0114 | GORANTALA SAI               | 18    | 14     |
| 17   | 19241A0115 | GUGULOTHU SANTHOSH          | 17    | 13     |
| 18   | 19241A0116 | GURIJALA SAI KUMAR          | 8     | 7      |
| 19   | 19241A0117 | GURUJALA SRIDHAR            | 8     | 8      |
| 20   | 19241A0118 | IRUVANTI HEMANTH KUMAR      | 13    | 11     |
| 21   | 19241A0119 | JANGITI VYSHNAVI            | 14    | 14     |
| 22   | 19241A0120 | JARUPLA CHERAN              | 17    | 14     |
| 23   | 19241A0122 | JETTI SREEVANI              | 17    | 14     |
| 24   | 19241A0123 | K SOWMYA                    | 15    | 16     |
| 25   | 19241A0124 | KADALI KRISHNASRI SAI       | 11    | 9      |
| 26   | 19241A0125 | KAMAREDDY AKSHAY            | 7     | 5      |
| 27   | 19241A0126 | KATTA SAI KUMAR             | 15    | 14     |
| 28   | 19241A0127 | KOLLURI.TEJASWI             | 18    | 14     |
| 29   | 19241A0128 | KONDAPURAM SRIJA            | 14    | 12     |
| 30   | 19241A0129 | KOTTE VIVEK                 | AB    | 7      |
| 31   | 19241A0130 | KRUTHIKA VIJAY PALANGE      | 9     | 15     |
| 32   | 19241A0131 | MADA AKHIL REDDY            | 14    | 12     |
| 33   | 19241A0132 | MADARAM SHRAVAN KUMAR REDDY | 17    | 16     |
| 34   | 19241A0133 | MADDIGATLA AJAY SAGAR       | 14    | 7      |
| 35   | 19241A0134 | CHANDANA MALPATEL           | 15    | 14     |
| 36   | 19241A0135 | MANDALA CHINNI              | 6     | 4      |
| 37   | 19241A0136 | MIREGILLA VIJAYAKUMAR       | 14    | 12     |
| 38   | 19241A0137 | MOHD OBAID KASHIF           | 13    | 11     |

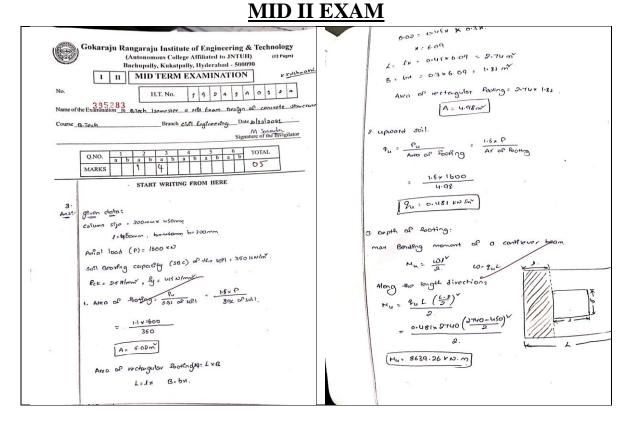
| 39 | 19241A0138 | NARAPAKA MADHAV KUMAR         | 6  | 4  |
|----|------------|-------------------------------|----|----|
| 40 | 19241A0139 | NIMMALA ARSHITHA              | 14 | 15 |
| 41 | 19241A0141 | P SIDDARTHA                   | AB | AB |
| 42 | 19241A0142 | PAGIDIPALLY AJAY KUMAR        | 14 | 11 |
| 43 | 19241A0143 | PALLAPU NAVEEN                | 12 | 8  |
| 44 | 19241A0144 | PALLE SANATH KUMAR            | 13 | 16 |
| 45 | 19241A0145 | PANTANGI PRANAY               | 14 | 9  |
| 46 | 19241A0146 | PATIL SWAPNIL                 | 7  | 5  |
| 47 | 19241A0147 | POLISETTY SAAHAS              | 15 | 14 |
| 48 | 19241A0148 | S.SAITEJA                     | 15 | 5  |
| 49 | 19241A0149 | SAI NEERAJ M                  | 14 | 7  |
| 50 | 19241A0150 | SATYA SAI PRASANNA REDDY      | AB | AB |
|    |            | SOLIPETA                      |    |    |
| 51 | 19241A0151 | SHAIK BILAL                   | AB | 7  |
| 52 | 19241A0152 | SHAIK FIRDOUS AYESHA          | 16 | 17 |
| 53 | 19241A0153 | SOORA VIKAS                   | 12 | 7  |
| 54 | 19241A0154 | TELLAM SRI SAI PAVANA ROSHINI | 18 | 14 |
| 55 | 19241A0155 | THALLAPALLY SWARANYA          | 14 | 12 |
| 56 | 19241A0156 | THUMATI VENKATA VAYUNANDHAN   | 11 | 6  |
| 57 | 19241A0157 | UDUMULA NIKHIL REDDY          | 16 | 8  |
| 58 | 19241A0158 | VELISHALA GAYATHRI            | 19 | 19 |
|    |            | VENKATA SIDDHARTHA RAJU       | 11 | 8  |
| 59 | 19241A0159 | VEGESNA                       |    |    |
| 60 | 19241A0160 | YASWANTH KURUVA               | 15 | 12 |
|    |            |                               |    | -  |

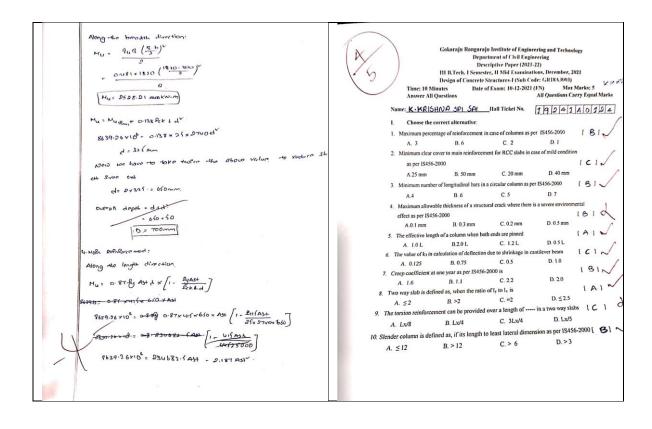

### MID-I AND M-II MARKS SECTION-B

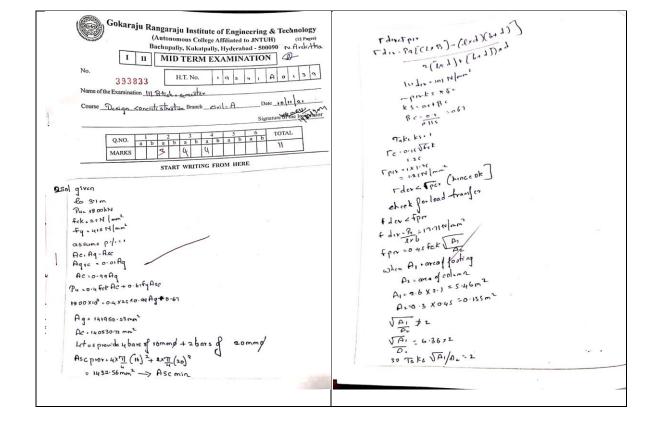

| MID II EXAM |            |                           | MID -I | MID -II |
|-------------|------------|---------------------------|--------|---------|
| S.NO        | ROLL NO.   | NAME                      | 20     | 20      |
| 1           | 19241A0161 | ABDUL RAHEEM              | 15     | 7       |
| 2           | 19241A0162 | ANEMONI MURALI MANOHAR    | 13     | 13      |
| 3           | 19241A0163 | ASKANY HARISH SAGAR       | 8      | 5       |
| 4           | 19241A0164 | BODLA AKSHITH             | 15     | 13      |
| 5           | 19241A0165 | BURRA VAMSHI KRISHNA      | 13     | 12      |
| 6           | 19241A0166 | CHERLAKOLA AKHILA         | 16     | 12      |
| 7           | 19241A0167 | CHINTAPALLI VIKRAM        | 8      | 6       |
| 8           | 19241A0168 | CHIRRIBOYINA DHANYA       | 11     | 6       |
| 9           | 19241A0169 | D SREE MADHURI            | 14     | 12      |
| 10          | 19241A0170 | GADDAM SAHITHI            | 13     | 13      |
| 11          | 19241A0171 | GAJJALA SUKENDHAR REDDY   | 18     | 14      |
| 12          | 19241A0172 | YASHASWI GANGAVARAM       | 17     | 13      |
| 13          | 19241A0173 | GINDHAM ADITYA KUMAR      | 8      | 7       |
| 14          | 19241A0174 | GUDHETI NARENDAR REDDY    | 8      | 8       |
| 15          | 19241A0175 | GUMMADI SAI PRATEEK REDDY | 13     | 11      |
| 16          | 19241A0176 | HANMAPUR DHEERAJ GOUD     | 14     | 14      |
| 17          | 19241A0177 | JAVVAJI AISHWARYA         | 17     | 14      |
| 18          | 19241A0178 | JULAPALLY NITHIN RAO      | 17     | 14      |
| 19          | 19241A0179 | K NAVEEN                  | 15     | 16      |
| 20          | 19241A0180 | K RAJESHWARI              | 11     | 9       |
| 21          | 19241A0181 | KACHAVA SURENDAR          | 7      | 5       |
| 22          | 19241A0182 | KODATHALA INDU            | 15     | 14      |
|             |            | KOTARU SRINIVASA          | 18     | 14      |
| 23          | 19241A0183 | VARAPRASAD                |        |         |
| 24          | 19241A0184 | MALOTH RAHUL              | 14     | 12      |
| 25          | 19241A0185 | MATURI SATHVIK            | AB     | 7       |
| 26          | 19241A0186 | MD ABDUL MAAJID           | 9      | 15      |
| 27          | 19241A0187 | MEDARI DAYANA             | 14     | 12      |
| 28          | 19241A0188 | NARSINGA SANDEEP          | 17     | 16      |
| 29          | 19241A0189 | PALANATI ROHITH           | 14     | 7       |
| 30          | 19241A0190 | PURALASETTY BHAVANA       | 15     | 14      |
| 31          | 19241A0191 | RODDA MALAVIKA REDDY      | 6      | 4       |
|             |            | SAPRAM NAGA SRILOWKYA     | 14     | 12      |
| 32          | 19241A0192 | MUKTHA                    |        |         |
| 33          | 19241A0193 | SHAIK PARVEZ ANSARI       | 13     | 11      |
| 34          | 19241A0194 | SIDDELA THARUN KUMAR      | 6      | 4       |
| 35          | 19241A0195 | TALARI CHANDANA SREE      | 14     | 15      |
| 36          | 19241A0196 | VALLEPU KALYAN            | AB     | AB      |
| 37          | 19241A0197 | VRASHAB PATEL             | 14     | 11      |
| 38          | 19241A0198 | YELLAVULA NARENDER        | 12     | 8       |
| 39          | 19241A0199 | BADDELA SAI THARUN        | 13     | 16      |
| 40          | 20245A0101 | Aamanchi Bowmi            | 14     | 9       |
| 41          | 20245A0102 | Aviraboina Sai Chaithanya | 7      | 5       |
| 42          | 20245A0103 | Bairy B S Anirudh         | 15     | 14      |


| 43 | 20245A0104 | Daddu Tejasree             | 15 | 5  |
|----|------------|----------------------------|----|----|
| 44 | 20245A0105 | Dopathi Raviteja           | 14 | 7  |
| 45 | 20245A0106 | Eruventi Niharika          | AB | AB |
| 46 | 20245A0107 | Gaddamidi Aanil            | AB | 7  |
| 47 | 20245A0108 | Gandla Rishik Raj          | 16 | 17 |
| 48 | 20245A0109 | Gone Naveen Kumar          | 12 | 7  |
| 49 | 20245A0110 | Kota Vishal                | 18 | 14 |
| 50 | 20245A0111 | Kummari Mahesh             | 14 | 12 |
| 51 | 20245A0112 | Lakavath Anil              | 11 | 6  |
| 52 | 20245A0113 | Madavaram Rohith           | 16 | 8  |
| 53 | 20245A0114 | Mandala Akshitha           | 19 | 19 |
| 54 | 20245A0115 | M Manjunath                | 11 | 8  |
| 55 | 20245A0116 | Porandla Nababhushanam     | 15 | 12 |
| 56 | 20245A0117 | Pulishetty Bhavani         | 15 | 7  |
| 57 | 20245A0118 | Racha Kranthi Ranadeer     | 13 | 13 |
| 58 | 20245A0119 | S Manoj Kumar              | 8  | 5  |
| 59 | 20245A0120 | Samudrala Manideep         | 15 | 13 |
| 60 | 20245A0121 | Sangepaga Goutham          | 13 | 12 |
| 61 | 20245A0122 | Sodadasi Rahul             | 16 | 12 |
| 62 | 20245A0123 | Vanga Harshith             | 8  | 6  |
| 63 | 20245A0124 | Choleti Vineetha           | 11 | 6  |
| 64 | 20245A0125 | Gangula Grishma            | 14 | 12 |
| 65 | 20245A0126 | Bollampalli Sai Poojith    | 13 | 13 |
| 66 | 20245A0127 | Pamulapati Sumanth         | 18 | 14 |
| 67 | 20245A0128 | T Sanghamithra             | 17 | 13 |
| 68 | 20245A0129 | Abeda Akanksha             | 8  | 7  |
| 69 | 20245A0130 | Doppalapudi Ramvineeth Sai | 8  | 8  |
| 70 | 20245A0131 | Pilly Uday Kiran           | 13 | 11 |

# Sample of Answer Scripts MID I EXAM


| 10    | Gokaraju Rangaraju Institute of Engineering & Technology                                                           |                                                               |
|-------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|       | (Autonomous College Affiliated to JNTUH) Bachupally, Kukatpally, Hyderahad - 500090                                |                                                               |
|       | 1 II MID TERM EXAMINATION                                                                                          | Vu, = 120 x 0 6                                               |
| 1     | No. 375052 H.T. No.                                                                                                | Vu, = 72 kN                                                   |
| 1     | Name of the Examination III B. tech I Sem , I Mid Assign of Contrek Structures - Examination                       | Shear force Vu = Vu, - Vu2                                    |
|       | Course 6. Tech Branch Civil-9 Date 14 [19 [20.2]]  Signature of the Invigilator                                    | Vu = 360 - 7d                                                 |
|       | Q.NO. 1 2 3 4 5 6 TOTAL ASALA                                                                                      | Vu = 898 KN                                                   |
|       | MARKS 2 3 5 2 3 15                                                                                                 | Nominal Shear Stren (tv)                                      |
|       | START WRITING FROM HERE                                                                                            | $Tv = \frac{Va}{b.d}$                                         |
| Jos E | Comment of 385m wide (b)                                                                                           | T v = 288 × 1000                                              |
| m     | Given , a simply supported beam of 225m wide (b) efficience clipte (d)- 450mm                                      | 7v = 2.84 N mm2                                               |
|       | carries a vol of w= 80 kN/m                                                                                        | Find out the value of Teman from [IS:456-2000 frage 75        |
| ,     | factored udl W=80×15 = 120 KN/m                                                                                    | for N20 grade of concrete                                     |
| 1     | efective span Leff - 6m                                                                                            | Te, max = 8.8 N/mm2                                           |
| l l   |                                                                                                                    | Tv > Te, max.                                                 |
|       | Alinforment consists of 5 tans of 25 mm dia, out of 2 bass  Sair safely tent and 3 tau ares used as reinforcement. | we , should re-design , increase width , let b= 250mm         |
| -     | Ase = $3 \times \frac{11}{4} (25)^2$                                                                               | Tv = 261×103<br>230×450                                       |
|       |                                                                                                                    | A-100 (100 C)                                                 |
|       | Ast = 1478.62 mm <sup>2</sup>                                                                                      | Tv = 2.78N/mm                                                 |
| _     |                                                                                                                    |                                                               |
|       |                                                                                                                    |                                                               |
| -     | 2. If (2c)2                                                                                                        | To a Tumas gls. Ob.                                           |
|       | $H_{tvb} = \mathcal{Q} \times \frac{1}{4} (82)^2$                                                                  | <b>VIV.</b>                                                   |
|       | Asvb = 981.74 mm <sup>2</sup>                                                                                      | duign shear reinforcement (71)                                |
|       | fck = 20 Nlmm2                                                                                                     | 1. of runtercement Pt - Ast v 100                             |
|       | Fy = 415 Nomm2                                                                                                     | Pt = 1.48%                                                    |
|       | bready of wall (bw) = 300 mm.                                                                                      |                                                               |
|       |                                                                                                                    | Pt 75 (0.73-0.67)                                             |
|       | Shear force due to UDL Vai = WL                                                                                    | $T = 0.67 + \frac{(6.7 - 5.067)}{(1.2 - 1.25)} (1.42 - 1.25)$ |
|       | Vu 1 = 120 × Ø 3                                                                                                   | 1.50 0.72                                                     |
|       | ( )                                                                                                                |                                                               |
|       | Vu = 360 kN                                                                                                        | Tv > Tc                                                       |
|       | distance between effective length from center of wall                                                              | shear force taken by concrete (Vui)                           |
| 181   | Left = brewath of wall + d                                                                                         | To bid = Vuc                                                  |
| 11    | **                                                                                                                 | Vuc = 0.764 x 23 C x 4 4 TD                                   |
|       | $L_{4}^{2} = \frac{300}{2} + 450$                                                                                  | Vuc- 7 BEEKN                                                  |
|       | Left = 600 mm = 0.6m                                                                                               | shear force for bensup bars Vus - Vu - Vuc                    |
|       | Elective Shear force at the distance from support                                                                  | Vas = 218 - 70 86                                             |
|       | Vu = W. Left                                                                                                       | Vus = 31514 KN                                                |
|       |                                                                                                                    |                                                               |



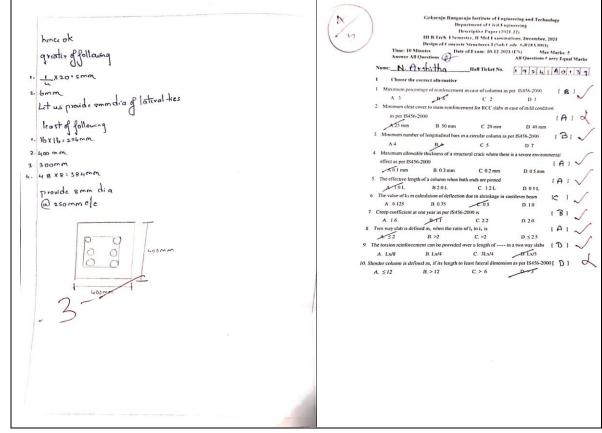



### Sample of Answer Scripts MID II EXAM








```
Rinformat
   Astronomial Ty Trucant Bd
                                                                 creep acc (pom ) = as (pom)
                                                                                      alcc= 217 = 9.66mm
                                                                                         EEG] I. []
      = 2827.8 = > AstmM
                                                                                       m = 0.42 × 12.32
      where Ast min
       = 131.70 mg
                                                                                       eff = 2500
        henceok
   Ast B. D. S. K fek [ 1 - VI - HL MU O] Lyd
                                                                                           ell=9615.34
      = 2421.11 mm = Astmin
                                                                                        al (perm)=we4
   At min = 0.12 y 2600 x 51 5
                                                                                          acc (Rim) = 9.66-3.71
  = 1700.4 mm
chick for oneway , lot
  Vul. (PaxB) + [(2-1)-1)
                                                                                           Total def= 16.8 smm
                                                                                                Sper = $50 = 10.28
     - 484.23 LN
   VuB. (PaxL)x(18-6)-d)
                                                                                                   STSPIT
      = 405.71 km
                                                                                            hince beam fails
  TULETO
                                                               9: ven
 TH= 14 = 042N/
  Le giborgs oubled steel
                                                               R=4 somm
   P./. -100 Ast=0.24
                                                                P= 2400KN
                                                                P4 = 2400 KNI
     0.25-0.56
                                                                9 50 (c = 3 50 KN | m 2
                                                                 fck=25 N (mm2
                                                                  ty : 415 N/mm
check for may slob
                                                               Arg : Paria = 1840 = 5.25 m2
```

```
Where P = Py +10. I self wit of footing
                                                                                                    Midl2 = 15.75 x3.62 = 102.06 kN - M
        = 2400+10 (2400)
                                                                                                       2= d-7 = 465-213-19 = 3939 mm
                                                                                                        III = 1606393976
                                                                                                          \frac{4}{1\cdot 2\cdot \left(\frac{4311\times 10^{\frac{1}{4}}}{1\cdot 0^{2\cdot 06}\times 10^{\frac{1}{4}}}\right)\left(\frac{243\cdot 93}{4\cdot 65}\right)}\left(\frac{1-213\cdot 14}{4\cdot 65}\right)
         = 1890KN
   Let B = 0.7
                                                                                                              Jeff = 1601041121 mai
   BX1.525
0.81 x L = 5.25
                                                                                                  1, = IM = Igr
15.6379112(6010.004)1121 = 3125000000
      L12.56m
    B=2.04m
 Provide La 2.6m
                                                                                                               5- wh = 8.26mm
          B= 2.10
 A prov: 2.6×2.1 = 5.46
Pa. Pu = 2400 = 439.5604 kN
aprov 5.46
BmL (PaxB) X (Let2)
= 533.56kn m
                                                                                                            Ducto shrinkage
                                                                                                                Qcs= K34 C 500
                                                                                                               k3 = 0.5 [ Por contiker)

pus= k4 805 = 0.66 × 0.0005

- 4.01×10-7
 Bmg . (Parc) x (8-6)"
     -462.8 1 kn.m
                                                                                                           where Ecs = 0.0003
 M4.0.130 Fck8d2
                                                                                                          Pt-100Ast= 0.9
 Bm (= 0.13 & fckBd2
 233.36x10=0.13 8x25 x5100x 95
                                                                                                            Pc . 0
  grid = 531 3320
                                                                                                          P+-Pc=0.9
 Let us praide D. 60000
 dprov= 600-50-10
                                                                                                           Ku : 0.72 × Pt. Pc 80 =0.6 6
dporesum
                                                                                                                  acs: 0.5 y 4.08 x 167 x 3600
                                                                                                                         acs = 2.64mm
```





S. Rahu)
20245A0122
D.C.S-1
Assignment-01
CIVIL-IIIB

# Design of Concrete Structures -1 UNIFOI. Concepts of PC Design Answer all the following questions 1) Explain why steel using as peinforcement in R.C.C and also Explain significance of steel in R.c structurer? steel is used as reinforcement to take up of the Tensile stresses in R.C.C Construction because of the Following Peasons 1 a) Its Tensile strength is high b) It can develop good bond with Concrete 9 Ite. Coefficient of Expansion is Nearly same as for of concrete d) It is Easily Available. Significance of steel in RC structures; The Peinforcement in fice serves the following different types of Functions

a) To resist the Bending tension in flexual member like slabs,

- beams and walls of water tables etc b) To increase the load carrying capacity of compression members Like columns
- c) To resist diagonal Tension due to shear
- d) To resist the effects of sewondary Stresses like Temperature
- e) To reduce the shrinkage of concrete
- f) To resist spiral cracking due to
- To prevent the development of wide craves in concrete due to Tensile
- 2) a) Define limit state and list out the Types of limit states considered in the Design of RC structures?
- A) limit states are the Acceptable limits for the safety and serviceability requirements of the structure before failure occurs.

The two limit states which are usually considered it limit state of Collapse iix limit state of serviceability

limit state of collapse;

In it is the limit state of which the structure is likely to collapse. The structure may collapse due to rupture of one (a) more critical sections (a) loss of overall stability due to Buckling or overturning. These limit state may correspond to

a) Hexure (b) Compression (c) shear (d) Torsion

Limit state of serviceability relate to the performance of the structure at which the structures

undergo Excessive deflection which adversly affect the finishes

Scanned with CamScanner

Causing discomfort to the users and Excessive Cracking which Effects the Efficiency of Appearance of structure. This may be corrispand to

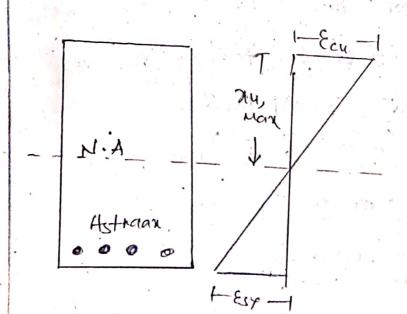
- c) other (Vibrations, fire resistance, Disturbances (Durability)
- b) Discuss the Assumptions in limit state of collapse in flexure.

A) i) Assumptions !

- . I) plane section xiormal to the axis , remain plane after bending
- The maximum strain in concrete at the outer most compression fiber is taken as 0.0035 in Bending
- 3) The Tensile strength of Concrete is Ignored

4) The Relationship between stress Strain distribution in Concrete is
assumed to be parabolic, and
compressive strength of Concrete in
the structure is Assumed to be
0.67 Times the Characteristic
Strength of Concrete.

Equal to 1.50 is Applied to the strength of Concrete in Addition to it. There fore the design strength of concrete is 0.67-tele = 0.446 Fek


from the representative stress strain Curve for the Type of steel used as. The partial safety factor Vm equal to IMMS 1.15 is Applied to the strength of Reinforcement, therefore the Design strength of steel is for a strength of steel is

3) Explain the moder of failures of. feinforced concrete member.

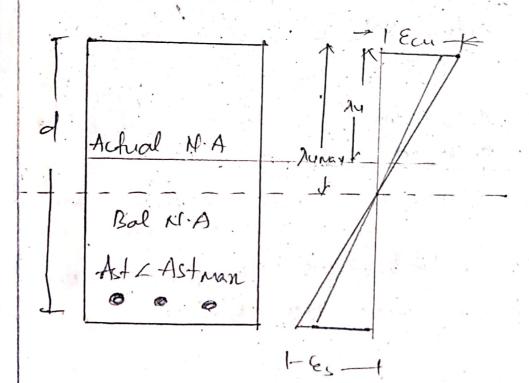
A feinforced concrete member is considered to have failed when the strain in Concrete in Extreme Compression Fiber reaches its Ultimate value equal to 0.0035

1) Ralanced Section;

when the maximum strains in steel and concrete reach their maximum Values simultaneously, the scation is known as Balanced section. The Percentage of steel provided for Balanced section is Called as Limiting percentagy of steel.



Xu = Xu, max


2) under reinforcement failure;

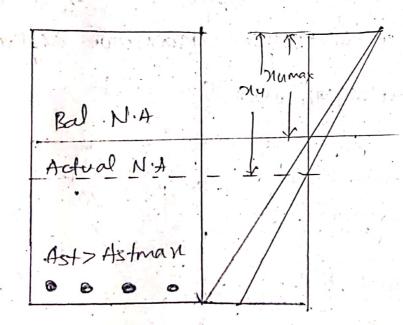
(Tensian | Doutile Failure)

when the amount of steel in a sculian is less than that required to a Balanced section, the section is called as under reinforced section.

In under Printerceal Sections; the Strain in Concrete does not reach its maximum value while the strain in Steel reaches its maximum value.

Nu < Ny, max




3) over-reinforced section;

[compression failure (a) Britle Failure)

when there arrount of steel in a section is more than that required for Balanced section, the section is called over-reinforced section.

In over peinforced sections, the strain in concrete reaches its vetimate value before steel reaches its Vield value.

Mu > Muniay.



4)

Differentiate was king stress and Limit state method.

|    | Differences T.                                                                                       |                                                                                                         |
|----|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|    | working stress<br>method                                                                             | Limit state                                                                                             |
|    | The stresses in an element is obtained from the working loads and Compared with permissible stresses | The stresses are obtained from design loads and Compared with Design Strength                           |
|    | This Method Follows<br>linear stress-strain<br>behaviour of both<br>the Maferials                    | 2) In this Method, it<br>follows non linear<br>Stress relationship<br>but linear strain<br>relationship |
| 7  | Factor of safety is<br>Used in W.S.M<br>W.S.M is a stress                                            | spartial safety.  factors are used in 1-sim  4) LSM is a strain Rased.  Method                          |
| 5) | this medical rieds<br>to un economical<br>Sections                                                   | Fieldsto the E Conomical  Pes'i gnu  Scanned with CamScanner                                            |

Q. Defermine the moment of feristance of a singly feinforced Concrete Beam of Pectangular Section 230mm wide and 430mm deep (Effective depth), fein Forced with 4-bors of lamm diameter, .. Use the grade of Concrete and Fe415 grade Of Steel, Pe-design the Beam it recessory b= 230mm d = 430mm (Effective depth) FCK = 20 N/mmv ty = 415 N/mm2 Ast = 4.-bas 0.f. 16 mm &  $Ast = 4 \times \frac{\pi}{4} \times (16)^{2} = 4 \times \frac{\pi}{4} \times (16)^{2}$ Ast = 80 LDY mm 1 Ast = 804.24 mmi According to Equillibrium

Compression = Tension 0.36 tck b xy = 0.87 fy .Ast X4 = 0.87 x-fy x Ast 0.36 FCK 6 XU= 0.87 x 415 x 804.24 0.36 x 20 x 230 1x4= 175.344mm For fe 415 Xu, man = 0.48 = 0.48d = Xumax Mu, max = 0.48x 430 = 206.4mm Xu, man = 206.4mm .. Therefore, dy is less than du, mark Hu Z Human under reinforced scrien Then Moment of fesistance M.O.A = 0.87.fg. Ast (d-0.416 na) MOR= 8-87-X415 X804.24 (480 -(0:016x M.OR = 103.67 x106 N. mm

Scanned with CamScanner

Then
Moment M.O.R = 103.67 KN/m.

Peristone

| UNIT-01. Concept of R.c Design.                                                                                    |
|--------------------------------------------------------------------------------------------------------------------|
| 1) In a Concrete grade Man 20 Mean                                                                                 |
| d) Testing after 20 days                                                                                           |
| 2) Minimum grade of concrete to be.  Used For Acc as per Is: 456; 200?  a) Mio b) Mi-                              |
| a) M10 b) M15 × M20 d) M25  The Time dependent deformation of Constant loading is known as  a) Tension b) fronting |
| c) shrinker                                                                                                        |
| 4) The Presence OF voids in Concrete                                                                               |
| A) Peduce its strength  b) This is the strength                                                                    |
| c) Petard setting                                                                                                  |
| Jan Jan under-reinforced Concrete                                                                                  |
| Beam                                                                                                               |

a) Achial depth of Newtral Axis is less than the critical depth of Hertral Axis 6) Morrent OF Peristonce is less than that of Balanced Sections S Both a and b d) sine of these 6) In case of under reinforced Beam sedan the Newfral Axis Lies a) Above Neutral Axis of Balanced Section 6) Belone Neutral Axis Of Balanced Section c) on Newtral Axis OF Balanced Section d) Independent of Newtral Axis of Ralanced section 7) In case of Over-reinforced section which Element fails first a) Both steel and Concrete simultant b) Neither sted (or) Concrete

|     | c) steel                                                               |
|-----|------------------------------------------------------------------------|
| . , | d) Concrete                                                            |
|     |                                                                        |
| 8   | the Tensile strength of Mar grade of                                   |
|     | Concrete &                                                             |
|     | a) 2N/mm2 b) 25N/mm2                                                   |
|     | c) 3N/mmr d) 3.5 N/mm2                                                 |
|     |                                                                        |
| 9)  | Maximum shrinkage strain allowed in<br>fc Design as per Is: 456; 2000? |
|     | Ac Design as per Time                                                  |
|     | 73,456; 2000                                                           |
|     | a) 0.0025 b) 6:00025                                                   |
|     | C) 0.003 d) 0.03                                                       |
|     |                                                                        |
| 10) | partial safety fator used for concrete                                 |
|     | and steel respectively as per limit                                    |
|     | Zina Design ?                                                          |
|     | a) 1.2 8.1.2 B) 1.5 and 1.15                                           |
|     |                                                                        |
|     | c) 1.5 &1.5 d) 1.8 and 1.5                                             |
| (1) | partial safety factor used in for                                      |
|     | Concrete and steel respectively as                                     |
|     | per working stress Method?                                             |
|     | a) les and 1.5                                                         |
|     | 5) 1.80 and 1.15                                                       |

| -   | y 6 3 and 1-80                                                                  |
|-----|---------------------------------------------------------------------------------|
|     | d) 3 and 1.50.                                                                  |
| (دا | Mominal mix proportions for M20 grade of concrete?                              |
| ,   | a) 1:2:4 b) 1:3:6                                                               |
|     | 9 1:1:2 2) 1:1.5:3                                                              |
| હ   | what is the value of Modulus of                                                 |
|     | Elasticity of M25 grade of concrete.  a) 20000 NImm > \$\frac{1}{25,000} NImm = |
|     | () 30,0000/mmv d) 35,0000/mmv                                                   |
| 14  | The Number ofice for Indian Standard<br>Coode of practice for Design lands      |
|     | toranguake for Buildings                                                        |
| • 1 | and structures is                                                               |
|     | a) 456 b) 800.                                                                  |
|     | S1875 a) 876                                                                    |
| 15) | what is the Design Strength of                                                  |
|     | Moo grade of concrete as per                                                    |

Limit state method of Design.

- a) 8N/mm2 b) 9 N/mm2
- c) 10 N/mm2 d) 12 N/mm2